Mirit I. Aladjem, Ph.D.

Mirit I. Aladjem, Ph.D.
Senior Investigator
Head, DNA Replication Group

Dr. Aladjem studies cellular signaling pathways that regulate DNA synthesis. Since many regulatory pathways affecting chromosome duplication are deregulated in cancer, such studies can help understand cancer biology and elucidate the cellular response to chemotherapeutic drugs.

Replication regulatory signals converge on replication origins, genomic regions that serve as replication starting points. Dr. Aladjem’s team was the first to map replication origins on a whole genome scale, demonstrating a strong association between replication, histone modifications and chromatin packaging. Her current studies identified proteins that dictate whether particular chromatin regions would replicate during normal growth and after exposure to anti-cancer therapy.

Areas of Expertise

1) cell cycle, 2) chromatin, 3) signal transduction, 4) genomics, 5) bioinformatics

Contact Info

Mirit I. Aladjem, Ph.D.
Center for Cancer Research
National Cancer Institute
Building 37, Room 5068D
Bethesda, MD 20892-4255
Ph: 240-760-7312
Fax: 240-541-4475
aladjemm@mail.nih.gov

Goal:  Our broad goal is to understand the cellular networks that signal to and from chromatin to modulate chromosome duplication. Since many regulatory feedback pathways are deregulated in cancer cells, the results of these studies will help our understanding of cancer biology and elucidate how both normal and cancer cells control their growth.

The challenge of understanding DNA replication:  Loss of genetic control of DNA replication is a hallmark of cancer cells. Hence, pathways that modulate replication can provide good targets for synthetic lethality approaches that specifically target cancer cells. On the other hand, DNA replication problems that go undetected and are not repaired can affect genomic integrity and trigger genomic instability, eventually resulting in cancer drug resistance. Hence, many anti-cancer drugs target various aspects of DNA replication and the effectiveness of such drugs critically depends on the nature of the genomic lesions affected in particular cancers.

To gain a better understanding of cell growth regulation, we identify signaling pathways that determine if and when replication would start at particular genomic locations and study how replication patterns respond to alterations in gene expression, chromatin modifications and drugs that perturb replication. As a part of the Developmental Therapeutics Branch, we are also involved in collaborative studies aimed at developing better ways to describe regulatory feedback networks that modulate cell cycle progression and the response of cancer cells to anti-tumor therapy.

Research strategy:  Eukaryotic cells initiate DNA synthesis at multiple sites on each chromosome, termed replication origins. Replication initiation events in mitotic cells proceed in a precise order and are strictly controlled by a series of cell cycle checkpoint signaling pathways (Aladjem and Redon, Nature Reviews Genetics 2017). These regulatory constraints, however, are often relaxed in cancer. Understanding the molecular events that precede DNA replication at the chromatin level is crucial if we are to fully understand cell growth. Critical information about this process is missing because the protein complexes that initiate chromosomal replication seem to bind to DNA indiscriminately. To gain a complete understanding of the DNA replication process we must resolve how these apparently non-specific DNA binding interactions between replication proteins and chromatin translate into highly coordinated replication.

Because the enzymatic complexes that drive DNA replication do not interact with specific DNA sequences, we are looking for other, sequence-specific protein-DNA interactions at subgroups of replication origins. For example, replication origins that are active in distinct cells, or start replication at a particular time point within the cell cycle. Then, we ask if those proteins modulate the local activity of the replication machinery. We also use whole-genome sequencing methods combined with imaging-based single-fiber analyses to characterize the effects of specific proteins on genome duplication patterns.

Protein-DNA interactions at replication origins:  To study DNA-protein interactions that affect DNA replication, we characterize distinct DNA sequences, termed replicators, which facilitate the initiation of DNA replication. We initially identified replicator sequences in mammalian cells (Aladjem, Science 1998).  We then used these replicators as baits to isolate protein complexes that potentially regulate replication. Using this strategy, we have identified discrete DNA-protein complexes that modulate the replication process.

One of the complexes we have identified includes RepID, a protein that binds to a group of replication origins and is required for replication at those origins (Zhang, Nat Commun. 2016). We found that RepID exerts its effects on replication by recruiting a ubiquitin ligase complex, CRL4, to chromatin, suggesting that ubiquitin ligase complexes play a role in regulating DNA replication (Jang, Nat Commun. 2018). These studies provide the first example of a DNA sequence-specific interaction that modulates the initiation of DNA replication. Current studies characterize the interactions of RepID with the replication machinery during normal and disrupted growth, and another role of RepID and CRL4 in ensuring proper progression during mitosis.

We have also found that replication origins bind another protein, a phosphorylated form of the NAD+-dependent deacetylase SIRT1 (Utani, Nucleic Acids Res. 2017). Unlike RepID, SIRT1 is not required for initiation of DNA replication, and instead, it prevents replication from a group of potential origins ("dormant origins"). In concordance, dormant replication origins are activated, and the overall frequency of replication initiation events increases, in cells that do not contain the phosphorylated form of SIRT1 (either due to a depletion or to a mutation in the phosphorylation site). We are currently investigating how SIRT1 modulates replication origin activation in cells exposed to stressful conditions.

Whole-genome chromatin patterns at replication origins:  To facilitate our studies, we have developed tools to map replication initiation sites throughout the genome and to analyze DNA replication in the context of chromatin modifications and transcriptional activity. Using a combination of DNA sequencing and single fiber analyses, we have generated a comprehensive dataset of replication initiation sites for several human cancer cell lines (Martin, Genome Res. 2010). We have demonstrated that replication origin usage is modulated by specific histone modifications (Fu, PLoS Genet 2013) and varies with tissue type, with distinct modifications associated with cell-type specific replication origins (Smith, Epigenetics and Chromatin 2016). To facilitate these studies, we are continuously developing bioinformatics tools to help decipher the relationships among RepID binding sites and epigenetic features (for example, Coloweb; Kim, BMC Genomics 2015). We are making these tools available to the community to support bioinformatics characterization of DNA-protein interaction loci.

Modulation of DNA replication: An important aspect of our work pertinent to human health is the response of the replication machinery to perturbations. Understanding specific cell cycle defects in different cancers is likely to provide clues regarding their sensitivity to anti-cancer therapies.

Because an increasing number of anti-cancer drugs target DNA replication or interfere with cell cycle signaling, we asked how particular replication and repair pathways affect the pace and frequency of DNA replication by combining nascent strand abundance sequencing and single fiber analyses. We observed that a DNA repair endonuclease, Mus81, modulates the pace of DNA replication in the absence of exogenous stress and that its presence is essential to help cells restore DNA synthesis in the presence of drugs that slow replication (Fu, Nat Commun. 2015). We are currently studying how replication origin binding proteins (e.g., SIRT1) affect the cellular response to perturbation of cell cycle progression.

Literature cited:

Aladjem MI, Rodewald LW,  Kolman JL and Wahl GM. Genetic dissection of a mammalian replicator in the human beta-Globin locus. Science 281:1005-1009, 1998.

Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet. 18:101-116, 2017.

Fu H, Martin MM, Regairaz M, Huang L, You Y, Lin CM, Ryan M, Kim R, Shimura T, Pommier Y, Aladjem MI. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat Commun. 6:6746, 2015.

Fu H, Maunakea AK, Martin MM, Huang L, Zhang Y, Ryan M, Kim R, Lin CM, Zhao K, Aladjem MI. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet. 9:e1003542, 2013.

Jang SM, Zhang Y, Utani K, Fu H, Redon CE, Marks AB, Smith OK, Redmond CJ, Baris AM, Tulchinsky DA, Aladjem MI. The replication initiation determinant protein (RepID) modulates replication by recruiting CUL4 to chromatin. Nat Commun. 9:2782, 2018.

Kim R, Smith OK, Wong WC, Ryan AM, Ryan MC, Aladjem MI. ColoWeb: A Resource for Analysis of Colocalization of Genomic Features. BMC Genomics 16:142, 2015.

Martin MM, Ryan M, Kim R, Zakas AL, Fu H, Lin CM, Reinhold WC, Davis SR, Bilke S, Liu H, Doroshow JH, Reimers MA, Valenzuela MS, Pommier Y, Meltzer PS, Aladjem MI. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 21:1822-1832, 2011.

Smith OK, Kim RG, Fu H, Martin M, Utani K, Zhang Y, Marks AB, Lalande M, Chamberlaine S, Libbrecht MW, Bouhassira EE, Ryan MC, Noble WC, Aladjem MI. Distinct Epigenetic Features of Differentiation-Regulated Replication Origins. Epigenetics and Chromatin 9:18. 2016.

Utani K, Fu H, Jang SM, Marks AB, Smith OK, Zhang Y, Redon CE, Shimizu N, Aladjem MI. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res. 45:7807-7824, 2017.

Zhang Y, Huang L, Fu H, Smith OK, Lin CM, Utani K, Rao M, Reinhold WC, Redon CE, Ryan  M, Kim RG, You Y, Hanna H, Boisclair  Y, Long  Q, Aladjem  MI. A Replicator-Specific Binding Protein Essential For Site-Specific Initiation of DNA Replication in Mammalian Cells. Nat Commun. 7:11748, 2016.

NIH Scientific Focus Areas:
Cancer Biology, Cell Biology, Chromosome Biology, Molecular Pharmacology, Systems Biology
View Dr. Aladjem's PubMed Summary.

Selected Key Publications

  1. Zhang, Y., Huang, L., Fu, H., Smith, O.K., Lin, C.M., Utani, K., Rao, M., Reinhold, W.C., Redon, C.E., Ryan, M., Kim, R.G., You, Y., Hanna, H., Boisclair, Y., Long, Q., and Aladjem, M.I.
    Nat. Commun. 7: 11748, 2016. [ Journal Article ]
  2. Smith, O.K., Kim, R.G., Fu, H., Martin, M., Utani, K., Zhang, Y., Marks, A.B., Lalande, M., Chamberlaines, S., Libbrecht, M.W., Bouhassira, E.E., Ryan, M.C., Noble, W.C., and Aladjem, M.I.
    Epigenetics and Chromatin. 9: 18, 2016. [ Journal Article ]
  3. Fu, H., Martin, M.M., Regairaz, M., Huang, L., You, Y., Lin, C.M., Ryan, M., Kim, R., Shimra, T., Pommier, Y., and Aladjem, M.I.
    Nat. Commun. 6: 6746, 2015. [ Journal Article ]
  4. Fu, H., Maunakea, A.K., Martin, M.M., Huang, L., Zhang, Y., Ryan, M., Kim, R., Lin, C.M., Zhao, K., and Aladjem, M.I.
    PLoS Genet. 9: e1003542, 2013. [ Journal Article ]
  5. Martin, M.M., Ryan, M., Kim, R., Zakas, A.L., Fu, H., Lin, C.M., Reinhold, W.C., Davis, S.R., Bilke, S., Liu, H., Doroshow, J.H., Reimers, M.A., Valenzuela, M.S., Pommier, Y., Meltzler, P.S., and Aladjem, M.I.
    Genome Research. 21: 1822, 2011. [ Journal Article ]

Dr. Aladjem received her Ph.D. from Tel Aviv University. She was a research associate at the Weizmann Institute of Science and then a postdoctoral fellow and a Leukemia Society Special Fellow at the Salk Institute in La Jolla, California. Dr. Aladjem joined the Laboratory of Molecular Pharmacology/Developmental Therapeutics Branch in October 1999 and was appointed a Senior Investigator in 2007. Dr. Aladjem's studies focus on cellular signaling pathways that modulate chromatin to regulate chromosome duplication and cell cycle progression.

Name Position
Haiqing Fu Ph.D. Staff Scientist
Sangmin Jang Ph.D. Postdoctoral Fellow (Visiting)
Christophe E. Redon, Ph.D. Research Biologist