Stephen K. Anderson, Ph.D.
- Center for Cancer Research
- National Cancer Institute
- Building 560, Room 31-93
- Frederick, MD 21702-1201
- 301-846-1330
- andersonst@mail.nih.gov
RESEARCH SUMMARY
The human KIR and murine Ly49 receptors for class I MHC play an important role in the development and function of natural killer (NK) cells. A major focus of the Anderson lab is unraveling the mechanisms controlling the stochastic process whereby class I receptors are expressed by subsets of NK cells. The discovery of probabilistic promoter switches in the separately evolved KIR and Ly49 gene families has produced a novel paradigm for the selective activation of genes. This paradigm has important implications for the control of stem cell fate, and the possibility of modifying differentiation outcomes in various systems.
Areas of Expertise
Stephen K. Anderson, Ph.D.
Research
Cellular and Molecular Studies of Cellular Cytotoxicity
The primary goal of our group is to achieve a more complete understanding of the cellular and molecular mechanisms of natural killer (NK) cell development and function. A large portion of modern cancer research has focused on the ability of the immune system to destroy cancer cells using tumor-specific antibodies and immunomodulatory agents. A better understanding of the mode of NK cell tumor recognition will allow us to design novel antitumor therapies.
The majority of our effort is directed toward the characterization of the murine Ly49 and human KIR families of NK cell receptors for class I MHC. Our lab has determined the organization of the Ly49 gene cluster in 129, BALB/c and NOD mice, demonstrating that Ly49 gene content and functional characteristics are significantly different between inbred mouse strains, analogous to the haplotype differences observed in the human KIR genes.
Our group has discovered a probabilistic transcriptional switch that controls Ly49 gene activation, and we have shown that the separately evolved human KIR gene family uses the same type of switch, indicating that probabilistic switches will likely be involved in many systems where genes are selectively activated in a subset of the cells in a given tissue. This discovery has important implications for the control of stem cell differentiation, and may one day allow us to modify cell fate in differentiating systems such as bone marrow cultures.
Collaborators on this research include Mary Carrington and Dan McVicar, NCI.
Publications
- Bibliography Link
- View Dr. Anderson's Complete Bibliography at NCBI.
Identification of an elaborate NK-specific system regulating HLA-C expression
Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells
Identification of a KIR antisense lncRNA expressed by progenitor cells
Differential Activation of the Transcription Factor IRF1 Underlies the Distinct Immune Responses Elicited by Type I and Type III Interferons.
Genetic control of variegated KIR gene expression: polymorphisms of the bi-directional KIR3DL1 promoter are associated with distinct frequencies of gene expression
Biography
Stephen K. Anderson, Ph.D.
Dr. Stephen Anderson is a Senior Scientist with Leidos Biomedical Research, Inc., working in collaboration with the Laboratory of Cancer Immunometabolism. He obtained his Ph.D. in 1986 from the University of Western Ontario and performed postdoctoral studies on natural killer (NK) cells at Mount Sinai Hospital in Toronto. Dr. Anderson was a project leader with the National Research Council of Canada before joining the Laboratory of Experimental Immunology at NCI in 1992.
Job Vacancies
We have no open positions in our group at this time, please check back later.
To see all available positions at CCR, take a look at our Careers page. You can also subscribe to receive CCR's latest job and training opportunities in your inbox.
Team
News
Learn more about CCR research advances, new discoveries and more
on our news section.