Imaging of Cancer

Subtitle: What actually happens in a Radiology Department?

Peter L. Choyke, MD, FACR
Molecular Imaging Program, NCI
Imaging of Cancer

• Imaging is a key element of:
 – Screening (e.g. lung cancer, breast cancer)
 – Staging (has it spread locally? Metastasized?)
 – Monitoring of treatment (Better or worse?)
 – Recurrence (Has it come back?)
 – Prognosis (What will happen?)
The Main Imaging Devices

- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Ultrasound (US)
- Single Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)
- Optical Imaging
The Main Imaging Devices

Quiz: Name that Scanner

CT
MRI
SPECT
PET
US
Computed Tomography
Advantages of CT

- Widely available
- Minimal prep (NPO, drink contrast)
- Very rapid (2-3 seconds neck to pelvis)
- High resolution
- Relatively inexpensive
Disadvantages

• Radiation
• Often requires iv contrast media
 – Allergic reactions (minimal)
 – Kidney damage (only in high risk patients)
• Anatomic information only
X-ray production

X-ray production: cathode ray tube
Basics of CT
CT projection

Filtered Back Projection

FIGURE 25.18
The Fourier Slice Theorem. The Fourier Slice Theorem describes the relationship between an image and its views in the Frequency domain. In the spatial domain, each view is found by integrating the image along a particular angle. In the frequency domain, the spectrum of each view is a one-dimensional “slice” of the two-dimensional image spectrum.
Cross section of a CT Scanner
“Spiral” CT
“Volume” CT imaging
Attenuation differences thru the body
Radiation

Lower kV (energy) x-rays
More sensitive detectors
Better reconstruction algorithms
“Synthetic” images
Contrast Media

Iodinated Contrast Media
Iodinated Contrast

Iodinated Contrast
Non ionic iodinated contrast
CT

Windowing a CT

“Windowing” a CT
MRI

Magnetic Resonance Imaging

Prostate Cancer on MRI and Pathology
MRI Advantages

• No radiation
• Multiplanar
• Multiple contrast types:
 – T1 weighting, T2 weighting
 – Diffusion weighting
 – Contrast enhanced MRI
 – Spectroscopy
MR Disadvantages

• Slower than CT
• More expensive
• Does not depict calcifications
• Safety issues
 – Metallic objects become projectiles
 – Incompatible with metallic implanted devices
 • Pacemakers
 • Cochlear implants
MRI physics

MRI Physics 101

Protons in space: no field

Protons in magnetic field
MR physics

MR Physics

Radio receiver
Summary
Creating a MR Image

Creating an MR Image:
No detectors! Just antennas (coils)
Anatomy of an MRI

Vents outside
Safety issues in MRI
The Importance of MR Safety

"Maybe it is time for us to review the magnet safety instructions."
MRI Safety

MRI SAFETY

- MRI scanners are extremely powerful
- Objects that are attracted by the MRI magnetic field can reach 60 miles per hour.
- A sharp or heavy object can be deadly to anyone standing in its path.
- Metal objects used everyday (scissors, oxygen tanks, infusion pumps, etc) become projectiles
- This can cause potential injury to patients or hospital staff.
- MRI departments are divided into Zones for Safety
MRI Safety

MRI SAFETY
Oxygen tank

O2 Tank, “Missile”

An Oxygen tank can become an Airborne torpedo in an MRI
Value of Contrast Media
Gd reagents
GD Reagents

<table>
<thead>
<tr>
<th>Extracellular Gd-CM</th>
<th>Type</th>
<th>Thermodynamic stability constant</th>
<th>Conditional Stability</th>
<th>Amount of excess chelate (mg ml⁻¹)</th>
<th>Kinetic stability (dissociation half-life at pH 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadoversetamide, Gd-DTPA-BMFA</td>
<td>Non-ionic linear</td>
<td>16.6</td>
<td>15</td>
<td>28.4</td>
<td>Not available</td>
</tr>
<tr>
<td>(OptiMark, Tyco, St. Louis, MO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadodiamide, Gd-DTPA-BMA</td>
<td>Non-ionic linear</td>
<td>16.9</td>
<td>14.9</td>
<td>12</td>
<td>35 s</td>
</tr>
<tr>
<td>(Omniscan, GE, Waukesha, WI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadobutrol, Gd-BT-DO3A</td>
<td>Non-ionic cyclic</td>
<td>21.8</td>
<td>Not available</td>
<td>Not available</td>
<td>5 min</td>
</tr>
<tr>
<td>(Gadovist, Schering, Berlin, Germany)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadoteridol, Gd-HP-DO3A</td>
<td>Non-ionic cyclic</td>
<td>23.8</td>
<td>17.1</td>
<td>0.23</td>
<td>3 h</td>
</tr>
<tr>
<td>(Prohance, Bracco, Italy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadopentetate Gd-DTPA</td>
<td>Ionic linear</td>
<td>22.1</td>
<td>18.1</td>
<td>0.4</td>
<td>10 min</td>
</tr>
<tr>
<td>(Magnevist, Schering, Berlin, Germany)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadobenate, Gd-BOPTA</td>
<td>Ionic linear</td>
<td>22.6</td>
<td>18.4</td>
<td>None</td>
<td>Not available</td>
</tr>
<tr>
<td>(Multihance, Bracco, Italy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadoterate, Gd-DOTA</td>
<td>Ionic cyclic</td>
<td>25.8</td>
<td>18.8</td>
<td>None</td>
<td>>1 month</td>
</tr>
<tr>
<td>(Dotarem, Guerbet, France)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nephrogenic systemic sclerosis

Examples: nephrogenic systemic sclerosis
Nephrogenic Systemic Fibrosis (NSF)

• May 2006 Danish Medicine Agency reported 25 cases of NSF in patients in renal failure who received gadodiamide (~2m)
• Nov 2006 Loma Linda reported 12 (8 on dialysis) NSF patients receiving 0.2mmol/Kg gadodiamide within 2-8 weeks of injection
• Since then over 200 cases have been reported with all of the available contrast agents but mostly Omniscan and Optimark
• By 2013 almost no cases are reported
Case of NSF

Case of NSF

AJR 188 Feb 2007
Mechanism

• Gadolinium is highly toxic
• Patients with normal renal function excrete Gd-chelates within 24-48h
• Patients with abnormal renal function may take weeks to excrete the agent
• Dissociation of Gd from the chelate could deposit in soft tissues (documented)
 – Hugh et al. Tissue Gd conc .14-24 ng/mL
• Fibrosis is an inflammatory response to toxic Gd ion.
Risk Factors

• Renal failure:
 – Dialysis
 – Chronic renal failure (GFR <30cc/min)

• Dose
 – Double, triple (vs. half dose)

• Contrast agent
 – Omniscan>Optimark>Magnevist>Prohance>

• Alternative imaging?
 – Non con MRI
 – CT, US, PET
Residual Gadolinium!

Extracellular Gd-CM

<table>
<thead>
<tr>
<th>Extracellular Gd-CM</th>
<th>Type</th>
<th>Thermodynamic stability constant</th>
<th>Conditional Stability</th>
<th>Amount of excess chelate (mg ml⁻¹)</th>
<th>Kinetic stability (dissociation half-life at pH 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadoversetamide, Gd DTPA-BMAA (OptiMark, Tyco, St. Louis, MO)</td>
<td>Non-ionic linear</td>
<td>16.6</td>
<td>15</td>
<td>28.4</td>
<td>Not available</td>
</tr>
<tr>
<td>Gadodiamide, Gd-DTPA-BMA, (Omnican, GE, Waukegan, W)</td>
<td>Non-ionic linear</td>
<td>16.9</td>
<td>14.9</td>
<td>12</td>
<td>35 s</td>
</tr>
<tr>
<td>Gadobutrol, Gd-BT-DO3A (Gadovist, Schering, Berlin, Germany)</td>
<td>Non-ionic cyclic</td>
<td>21.8</td>
<td>Not available</td>
<td>Not available</td>
<td>5 min</td>
</tr>
<tr>
<td>Gadobenate, Gd-HP-DO3A (Prohance, Bracco, Italy)</td>
<td>Non-ionic cyclic</td>
<td>23.8</td>
<td>17.1</td>
<td>0.23</td>
<td>3 h</td>
</tr>
<tr>
<td>Gadopentetate, Gd-DTPA (Magnevist, Schering, Berlin, Germany)</td>
<td>Ionic linear</td>
<td>22.1</td>
<td>18.1</td>
<td>0.4</td>
<td>10 min</td>
</tr>
<tr>
<td>Gadobenate, Gd-BOPTA (Multichance, Bracco, Italy)</td>
<td>Ionic linear</td>
<td>22.6</td>
<td>18.4</td>
<td>None</td>
<td>Not available</td>
</tr>
<tr>
<td>Gadoterate, Gd-DOTA (Dortam, Guerbet, France)</td>
<td>Ionic cyclic</td>
<td>25.8</td>
<td>18.8</td>
<td>None</td>
<td>>1 month</td>
</tr>
</tbody>
</table>
Ultrasound
US advantages

• No radiation
• Real time
• Inexpensive
• Quick, little prep
• No injection
US disadvantages

• Operator dependent
• What you see is all there is
• Difficult to quantify
• Limited access (lungs, brain, bone etc.)
Ultrasound basics

US basics

Imaging dependent on the speed of sound in tissue
Fate of sound waves in body
Liver metastases
US Probes
Evolution of US devices
US guided biopsy-real time
US Microbubble contrast

Contrast agent characteristics

Size
- microbubble (mean diameter 1–4 mm)
- nanoparticle (mean diameter <1 mm)

Gas composition
- Air or nitrogen
- Sulfur hexafluoride
- Perfluorocarbons (C₆F₁₃, C₅F₁₁)

Shell composition
- lipid or other lipid-like surfactant
- protein (albumin)
- biocompatible polymers

Current Opinion in Biotechnology
Single Photon Emission Computed Tomography-SPECT

• Single Photon Emission

+

• Computed Tomography
SPECT Advantages/Disadvantages

• Relatively inexpensive
• Broad experience

• Disadvantages
 – Radiation exposure
 – Preparation of imaging agent
 – Nuclear Regulatory
 – Scanning is slow, low resolution
SPECT detectors
Collimation cont’d

Collimation reduces the sensitivity and resolution of SPECT by rejecting the majority of events.
SPECT Imaging

- Requires conjugation of a radioactive isotope to a compound of interest which is injected into the patient:

The bone scan:

99mTechnetium-methyl diphosphonate

![Bone scan image]

Graph showing the radioactive decay of 99mTechnetium (half-life = 6 hours) with negligible activity after 2 days.
SPECT agents for cancer

- 99mTc MDP Bone Scan
- 99mTc Pertechnetate (thyroid, salivary gland)
- 201Thallium Chloride (parathyroid)
- 111Indium oxine (WBC labelling)
- 131Iodine (thyroid)
Hybrid Imaging
Safety

- Operator
- Patient
Positron Emission Tomography
PET: Advantages and Disadvantages

- Highly sensitive
- Metabolic information
- Better spatial resolution than SPECT
- Combined with CT
- Expense
- Regulatory
- Short half life
Positron Emission Tomography

^{18}F

e^+
Very high sensitivity (pM-nM)
Quantitative
± Spatial resolution 3-4mm
F-18 Deoxyglucose
FDG PET Imaging

GLUT transporter

hexokinase

Intravascular FDG → Intracellular FDG → Intracellular FDG-6-PO₄

FDG-6-PO₄ → HK

1⁸FDG
Facilitate Advanced Imaging Technology

- Positron Emission Tomography
 - PET-CT Device
Mediastinal and spine metastases (breast)

Metastatic Breast Cancer
Notable PET Agents

- Sodium Fluoride: Bone target
- Fluorothymididine: Cellular Proliferation
- Fluoroestadiol: Estrogen receptor
- Fluorocholine: Membrane Turnover
- Fluoromiso: Hypoxia
- Florbetaben: Amyloid (Alzheimers)
- Zirconium Herceptin: labeled antibody
- Zirconium Oxine: Cell labeling
Non-attenuation corrected

Attenuation corrected

Lung fields appear 'Hazy'
PET Imaging

• Positron emission tomography (PET) has the advantages of:
 – High energy photon imaging
 – High Sensitivity, Moderate Specificity
 – The ability to correct for attenuation
 – No need for collimation
 – Resolution is still limited
Summary of Cancer Imaging

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Resolution</th>
<th>Sensitivity</th>
<th>Cost (low-hi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>CT</td>
<td>PET</td>
<td>US</td>
</tr>
<tr>
<td>MRI</td>
<td>MRI</td>
<td>SPECT</td>
<td>CT</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>US (microbubble)</td>
<td>SPECT</td>
</tr>
<tr>
<td>SPECT</td>
<td>PET</td>
<td>MRI</td>
<td>MRI</td>
</tr>
<tr>
<td>PET</td>
<td>SPECT</td>
<td>CT</td>
<td>PET</td>
</tr>
</tbody>
</table>
Summary of Cancer Imaging

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Resolution</th>
<th>Sensitivity</th>
<th>Cost (low-hi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>CT</td>
<td>PET</td>
<td>US</td>
</tr>
<tr>
<td>MRI</td>
<td>MRI</td>
<td>SPECT</td>
<td>CT</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>US (microbubble)</td>
<td>SPECT</td>
</tr>
<tr>
<td>SPECT</td>
<td>PET</td>
<td>MRI</td>
<td>MRI</td>
</tr>
<tr>
<td>PET</td>
<td>SPECT</td>
<td>CT</td>
<td>PET</td>
</tr>
<tr>
<td>Presentation</td>
<td>Resolution</td>
<td>Sensitivity</td>
<td>Cost (low-hi)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CT</td>
<td>CT</td>
<td>PET</td>
<td>US</td>
</tr>
<tr>
<td>MRI</td>
<td>MRI</td>
<td>SPECT</td>
<td>CT</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>US (microbubble)</td>
<td>SPECT</td>
</tr>
<tr>
<td>SPECT</td>
<td>PET</td>
<td>MRI</td>
<td>MRI</td>
</tr>
<tr>
<td>PET</td>
<td>SPECT</td>
<td>CT</td>
<td>PET</td>
</tr>
</tbody>
</table>
Summary of Cancer Imaging

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Resolution</th>
<th>Sensitivity</th>
<th>Cost (low-hi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>CT</td>
<td>PET</td>
<td>US</td>
</tr>
<tr>
<td>MRI</td>
<td>MRI</td>
<td>SPECT</td>
<td>CT</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>US (microbubble)</td>
<td>SPECT</td>
</tr>
<tr>
<td>SPECT</td>
<td>PET</td>
<td>MRI</td>
<td>MRI</td>
</tr>
<tr>
<td>PET</td>
<td>SPECT</td>
<td>CT</td>
<td>PET</td>
</tr>
</tbody>
</table>
General Guidelines

• Overall “workhorse” for oncology: CT
• Specialty cancers: brain, liver, prostate: MRI
• Problem solving (e.g. cyst vs. solid): US
• Bone mets: SPECT
• Metabolic activity: PET
Imaging of Cancer:

http://mip.nci.nih.gov

pchoyke@nih.gov