Ovarian Cancer in the Genomics Era

Christina M. Annunziata, MD, PhD

Women's Malignancies Branch National Cancer Institute Bethesda, MD

Cancer Genomics

- Study of the genome
 - Chromosomes
 - Gene expression
 - Global analysis (not individual entities)

- 1959 Nowell and Hungerford
 - Study of chromosomes
 - Identified recurrent abnormality
 - Philadelphia chromosome
 - Chronic leukemia

• 1959 – Nowell and Hungerford

• 1973 – Janet Rowley

Table 1 Summary of Chromosomal Analysis

Case	Age (yr)	Duration of CML (yr)	Karyotype*6,7
18	72	6	46,XY,9q+,22q-
28	29	31	48, XY, 9q + + C, + mar, -17, + F, 22q -
38	37	3 1	46,XY,9q+,22q-
- •		_	50,XY,9q+,+8,+C,+mar,22q-,
			+22q-
			50, XY, 9q+, +8, +C, +mar, 22q-,
			+22q-
4§	71	11	46, XX, 9q + , + mar, -17, 22q - 17, 22q
			4/XX,9q+,+C,+mar,-1/,22q-
5§‡	51	21	48, XY, 9q+, +mar, 22q-, +22q-
6	45	2 mo	46,XX,9q-1-,22q-
7	25	1	46,XX,9q+,22q-
8	18	3	46,XX,9q+,22q-
9	64	$3\frac{1}{2}$	46,XX,9q+,22q-

• 1984 – Groffen – BCR-ABL

- 1996 Drucker blocking ABL
 - Fig. 1 Structure of CGP 57148.

- What part of the genome is functional
- Causes an effect
- Transforms normal cells into cancer
- Looking for "driver" alterations

1981 – Shih – discovery of Her2/neu

Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts

Chiaho Shih, L. C. Padhy, Mark Murray & Robert A. Weinberg

Deventure of Distance of Conton for Concor December

• 1985 – Coussens – Her2 on chromosome 17

• 1987 – Slamon – HER2 in breast cancer

Using genomics to study ovarian cancer

Do we have any "drivers"?

- Most lethal gynecologic malignancy in the US
 - >16,000 deaths/yr
 - 5th most common cancer death for women
- 70% diagnosed with advanced disease
- < 35% of advanced stage patients alive at 5y

Stage	e Description	Incidence	Survival
I.	Confined to ovaries	20%	90%
Ш	Confined to pelvis	5%	65%
	Spread IP or nodes	58%	45%
IV	Distant metastases	17%	<5%

Treatment for Newly Diagnosed Ovarian Cancer

- Complete surgical staging
- Optimal reductive surgery
- Chemotherapy
- Clinical Trials

The State of Treatment for Newly Diagnosed Ovarian Cancer

- Complete surgical staging
- Optimal reductive surgery

Chemotherapy

- Platinum = cisplatin or carboplatin AND
- Taxane = paclitaxel or docetaxel
- Intraperitoneal if Stage III, optimal reduction
- Clinical Trials

Treatment and Outcome for Advanced Ovarian Cancer

ALKYLATORS		CISPLATIN/ALKYLATOR COMBINATIONS		INTRA- PERITONEAL
1960		1980		2000
	1970		1990	
	CISPLATIN	PA CA	CLITAXEL/ RBOPLAT	/ IN
0	5%	15%	35%	40%
1960	1970	1980	1990	2000
5 YR SURVIVAL ADVANCED DISEASE				

Prevalence

- Serous 80%
- Endometrioid 10%
- Clear cell 5%
- Mucinous 3%
- Other 2%

Soslow R. Int J Gyneol Pathol, 2008

Prevalence

- Serous 80%
- Endometrioid 10%
- Clear cell 5%
- Mucinous 3%
- Other 2%

Tissue of origin

- Fallopian tube?
 - Serous
- Endometriosis?
 - Endometrioid and clear cell
- Mullerian epithelium
 - Extra-uterine

- Increasing our understanding about the biological and biochemical events underlying ovarian cancer progression will create avenues for new treatments
- Can we use Genomics?

Clear cell, Endometrioid

Clear Cell cancers

- 5-10% of all cases (serous = 70%)
- Worse response to standard chemotherapy
- Associated with endometriosis (up to 40%)

Clear cell OC – genomics

- Sequenced RNA from 18 clear cell ovarian cancers, and one cell line (discovery)
- Sequenced DNA exons from 210 samples
 - 101 more clear cell, 33 endometrioid, 76 serous, 1 more clear cell line (validation)
- Immunostain 455 more samples
 - 132 clear cell, 125 endometrioid, 198 serous

ARID1A mutations in clear cell

Weigand, NEJM 2010

ARID1A

- SWI-SNF chromatin remodeling complex
- Mutated in breast cancer, lung cancer
- 1p36: deleted 6% of all cancers
- Tumor suppressor gene?

ARID1A mutations

Weigand, NEJM 2010

Clear cell and endometrioid cancer

- ARID1A mutated or lost in
 - Over 40% clear cell
 - 30% endometrioid
 - Less than 1% serous
- Unknown oncogenic mechanism
 - No indication of which resulting pathways affected
 - Unclear therapeutic utility
- Diagnostic utility?
 - Not a 'functional' experiment

Mucinous

Mucinous ovarian cancer

Wamunyokoli, Clin Cancer Res, 2006

KRAS mutations - mucinous

Table 2: KRAS mutation frequencies observed in borderline malignancies

borderline							
histotype	n	mutated	% mutated				
serous	20	7	35.00				
endometroid	I.	0	0.00				
mucinous	6	3	50.00				
unknown	2	0	0.00				
total	29	10	34.48				

Auner, BMC Cancer 2009

Low grade serous

KRAS and BRAF mutations

- BRAF codon 599
- KRAS codon 12 or 13
- 15 of 22 (68%) of low grade serous cancers
- 31 of 51 (61%) precursor lesions (SBT)
- None of 72 high grade serous cancers

KRAS and BRAF mutations

RAS signaling pathway - a potential driver?

http://scienceblogs.com/pharyngula/2013/ 09/21/16271/
Clinical trial: MEK inhibitor

- Recurrent Low Grade Serous ovarian cancer
- Selumetinib 50 mg twice daily
- 52 patients
 - 8 responses
 - 34 stable disease >4mo

	Number	No tumour response	Tumour response	p value*		
Total	34	27 (79%)	7 (21%)			
BRAF mutation						
No	32	25 (78%)	7 (22%)	1.000		
Yes	2	2 (100%)	0			
KRAS mutation						
No	20	15 (75%)	5 (25%)	0.672		
Yes	14	12 (86%)	2 (14%)			
BRAF or KRAS mutation						
No	18	13 (72%)	5 (28%)	0.405		
Yes	16	14 (88%)	2 (13%)			
Data are number (%), unless otherwise indicated. *Fisher's exact test.						
Table 8: Tumour response (complete or partial) by BRAF and KRAS						
mutation	5		Farley, Lan	cet Oncol 2013		

High grade serous

High grade serous cancers

- The Cancer Genome Atlas (TCGA)
 - Clinically annotated HGS-OvCa samples
 - Identify molecular abnormalities that
 - influence pathophysiology,
 - affect outcome and
 - constitute therapeutic targets.
 - Microarray analyses: 489 HGS-OvCa tumours,
 - mRNA expression,
 - microRNA (miRNA) expression,
 - DNA copy number and
 - DNA promoter methylation for and
 - Whole exome DNA sequence: 316 samples.

High grade serous cancers

Sample inclusion criteria

- Newly diagnosed patients
- ovarian serous adenocarcinoma
- no prior treatment
- companion normal tissue specimen
 - adjacent normal tissue,
 - peripheral lymphocytes,
 - or previously extracted germline DNA

Genome copy number abnormality

Copy number profiles of 489 HGS-OvCa, compared with profiles of 197 glioblastoma multiforme (GBM) tumours.

Copy number increases (red) and decreases (blue) are plotted as a function of distance along the normal genome (vertical axis, divided into chromosomes).

Deletion

Neutral

Amplification

Gene	No. of mutations	No. validated	No. unvalidated
TP53	302	294	8
BRCA1	11	10	1
CSMD3	19	19	0
NF1	13	13	0
CDK12	9	9	0
FAT3	19	18	1
GABRA6	6	6	0
BRCA2	10	10	0
RB1	6	6	0

Table 2 | Significantly mutated genes in HGS-OvCa

Validated mutations are those that have been confirmed with an independent assay. Most of them are validated using a second independent whole-genome-amplification sample from the same tumour. Unvalidated mutations have not been independently confirmed but have a high likelihood to be true mutations. An extra 25 mutations in *TP53* were observed by hand curation.

Altered pathways in HGS-OvCa

The Cancer Genome Atlas, Nature 2011

TCGA – what next?

- New therapeutic approaches?
 - 50% with HR defects : **PARP inhibitors**
 - commonly deregulated pathways: RB, RAS/PI3K, FOXM1, NOTCH, provide opportunities for therapeutic treatment
 - Inhibitors exist for 22 genes in regions of recurrent amplification
- aberrant genes or **networks**: targeted therapies selected to be effective ...

Targeting deficient Homologous Recombination

PARP inhibitors

BRCA mutations

• Hall...King, Science, 1990

High grade serous cancers

recombination defect

BRCA mutations... and beyond

100 Genes associated with -HRD ^percent survival HR-intact 80 mutations in Homolgous P<0.0001 60 n=295 **Recombination machinery** 40 20 RAD51 0 BRCA1 378 175 279 (975)0 5 10 15 20 (856)Survival time (years) 230 73 291 1.20 D, deficient HR Fold change of survival 1.00 I, intact HR 0.80 BRIT1 992 (1,586)0.60 0.40 VCAR-8 (I) 0.20 OVCAR-3 (D) Peng et al, Nat Comm, 2014 0.00 10⁻⁸ 10⁻⁷ 10⁻⁶ (M) 0

PARP inhibitor

- Olaparib (AZD2281)
 - novel, orally active PARP inhibitor
 - synthetic lethality in homozygous BRCA-mut cells

Carboplatin AUC 4 (every 21 days)

- Results: 45 enrolled patients
 - 37 ovarian cancer
 - 8 breast cancer
 - Phase 1 dose escalation = 30 patients
 - Phase 1b expansion = 15 patients
 - MTD = Carboplatin AUC5 on day 1 + Olaparib 400mg twice daily on days 1-7, every 21 days

Lee, et al. J Natl Cancer Inst Vol. 106(6) June 2014

Ovarian cancer (n = 34)†

Best response	No. (%)	Median duration in months (range)
CR	0	
PR	15 (44.1)	16 (4 to >45)
SD ≥ 4 mo	13 (38.2)	11 (6 to 24)
PD	6 (17.6)	
Overall response rate	15	/34 (44.1)
Clinical benefit rate	28	/34 (82.3)

• Conclusions:

- Oral olaparib is well tolerated in combination with carboplatin
- Highly active in advanced, chemotherapy-refractory BRCA-deficient cancer
- Greater activity seen at the higher dose
- Positive proof of the concept of the activity and tolerability of genetically defined targeted therapy with olaparib in BRCA-deficient cancers
- Results of sporadic HGSOC cohort to be presented at ASCO meeting 2015

Exploration of new targets	
Functional Genomics	

"Actionable" mutations

- Commercially available testing
 - e.g., Caris, Foundation One
 - Report "possible" or "unlikely" benefit
- "Basket" clinical trials
 - e.g., NCI-MPACT
 - Assign treatment based on mutation
- Typically no functional link

"Actionable" mutations

- "...depends in large part on the strength of the data linking the target and targeted therapy."
- "For this trial design to work, two key conditions must be met:
 - the tumor must depend on the target pathway, and
 - the targeted therapy must reliably inhibit the target."
- "Achieving both goals can be a matter of some complexity."

Redig and Janne, J Clin Oncol 2015

"Actionable" targets

- Need a <u>functional</u> experiment
- Functional genomics

Using a functional genomics screen to identify targets

Creation of an Inducible shRNA Retroviral Library for Functional Genomics Studies of Cancer Phenotypes

shRNA retroviral library

-- shRNAs targeting 2500 human genes

- -- 3 shRNA constructs per gene
- -- All sequence verified
- -- All containing identified 60-mer bar code sequence
- -- shRNA expression is inducible by doxycycline
- -- Library target genes:
 - All protein kinases
 - All PI3 kinase
 - All deubiquitinating enzymes
 - NF-kB pathway regulators

Differentially expressed genes among lymphoma types Apoptosis regulators, oncogenes, tumor suppressors

Ngo, et al. Nature 2006

shRNA Library Screen for Genes Controlling Cancer Cell Proliferation and Survival

Functional Genomics of ovarian cancer

- Four ovarian cancer cell lines
 - OVCAR3 serous
 - OVCAR5 serous
 - Igrov1 non-serous
 - A2780 non-serous

Common targets in ovarian cancer – "drivers"?

Common targets in ovarian cancer – "drivers"?

Functional genomics of ovarian cancer

- Following up in
 - 6 additional cell lines
 - 2 different RNAi constructs
 - Select "druggable" targets
- Focused functional screens
 - Specific subgroup of serous ovarian cancer
 - NF-kappaB signaling pathway

The Cancer Genome Atlas, Nature 2011

Gene expression – immunoreactive

IKK_E related targets

CHEK1

 Overexpressed in nearly all ovarian cancers

Kim, et al. Oncotarget, 2014

CHEK signaling

Biodiscoveryjournal.co.uk

CHEK inhibitor

Most potent in HGSOC

CHEK inhibitor

- Clinical trial ongoing
 - NCT02203513
 - Promising results in High grade serous non BRCA
 - Highlighted by a Functional Genomics approach

Ovarian cancer genomics Summary

Ovarian cancer genomics

Functional Genomics

1981 – Shih – discovery of Her2/neu

Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts

Chiaho Shih, L. C. Padhy, Mark Murray & Robert A. Weinberg

Deventure of Distance of Conton for Concor December

shRNA Library Screen for Genes Controlling Cancer Cell Proliferation and Survival

Women's Cancer Team:

Stan Lipkowitz, MD, PhD Jung-Min Lee, MD **Alexandra Zimmer, MD** Victoria Chiou, MD Ciara O'Sullivan, MD Anne Noonan, MD Elise C. Kohn, MD **Nicole Houston, RN** Irene Ekwede, RN **MOS Fellows and Nursing Staff**

Translational scientists: Lidia Hernandez, MS Marianne Kim, PhD Carrie House, PhD Kristen Bunch, MD <u>Collaborators:</u> Lou Staudt, MD, PhD George Wright, PhD

> <u>Funding:</u> National Cancer Institute, IRP

Women's Cancer Foundation

Patients and their families