Imaging of Cancer

Imaging of Cancer:

Subtitle: What actually happens in a Radiology Department?

Peter L. Choyke, MD, FACR Molecular Imaging Program, NCI

Imaging of Cancer

- Imaging is a key element of:
 - Screening (e.g. lung cancer, breast cancer)
 - Staging (has it spread locally? Metastasized?)
 - Monitoring of treatment (Better or worse?)
 - Recurrence (Has it come back?)
 - Prognosis (What will happen?)

The Main Imaging Devices

- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Ultrasound (US)
- Single Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)
- Optical Imaging

The Main Imaging Devices

Quiz: Name that Scanner

Computed Tomography

X-ray production

X-ray production: cathode ray tube

Basics of CT

Basics of CT

Cross section of a CT Scanner

CT projection

Filtered Back Projection

FIGURE 25-18

The Fourier Slice Theorem. The Fourier Slice Theorem describes the relationship between an image and its views in the frequency domain. In the spatial domain, each view is found by integrating the image along rays at a particular angle. In the frequency domain, the spectrum of each view is a one-dimensional "slice" of the two-dimensional image spectrum.

"Volume" CT imaging

CT

Windowing a CT "Windowing" a CT

Advantages of CT

- Widely available
- Minimal prep (NPO, drink contrast)
- Very rapid (2-3 seconds neck to pelvis)
- High resolution
- Relatively inexpensive

Disadvantages

- Radiation
- Often requires iv contrast media
 - Allergic reactions (minimal)
 - Kidney damage (only in high risk patients)
- Anatomic information only

Radiation reduction on CT

Radiation

Lower kV (energy) x-rays More sensitive detectors Better reconstruction algorithms "Synthetic" images

Attenuation differences thru the body

Contrast Media

Iodinated Contrast Media

Contrast media

Basic Structures of Contrast Media

Non ionic iodinated contrast

Non ionic Iodinated Contrast

Iodinated Contrast

Iodinated Contrast

MRI

Magnetic Resonance Imaging

Prostate Cancer on MRI and Pathology

MRI physics

MRI Physics 101

Protons in space: no field

Protons in magnetic field

MR physics

MR Physics

Summary

Creating a MR Image

Creating an MR Image: No detectors! Just antennas (coils)

Anatomy of an MRI

MRI Advantages

- No radiation
- Multiplanar
- Multiple contrast types:
 - T1 weighting, T2 weighting
 - Diffusion weighting
 - Contrast enhanced MRI
 - Spectroscopy

MRI Disadvantages

- Slower than CT
- More expensive
- Does not depict calcifications
- Safety issues
 - Metallic objects become projectiles
 - Incompatible with metallic implanted devices
 - Pacemakers
 - Cochlear implants

Safety issues in MRI

MRI Safety

MRI SAFETY

- MRI scanners are extremely powerful
- Objects that are attracted by the MRI magnetic field can reach 60 miles per hour.
- A sharp or heavy object can be deadly to anyone standing in its path.
- Metal objects used everyday (scissors, oxygen tanks, infusion pumps, etc) become projectiles
- This can causepotential injury to patients or hospital staff.
- MRI departments are divided into Zones for Safety

MRI Safety

MRI SAFETY

•

Oxygen tank

O2 Tank, "Missile"

An Oxygen tank can become an Airborne torpedo in an MRI

Value of Contrast Media

Gd reagents

GD reagents

GD Reagents

Extracellular Gd-CM	Туре	Thermodynamic stability constant	Conditional Stability	Amount of excess chelate (mg ml ⁻¹)	Kinetic stability (dissociation half-life at pH 1.0)
Gadoversetamide, Gd-DTPA-BMEA (OptiMark, Tyco, St. Louis, MO)	Non-ionic linear	16.6	15	28.4	Not available
Gadodiamide, Gd-DTPA-BMA (Omniscan, GE, Waukesha, WI)	Non-ionic linear	16.9	14.9	12	35 s
Gadobutrol, Gd-BT-DO3A (Gadovist, Schering, Berlin, Germany)	Non-ionic cyclic	21.8	Not available	Not available	5 min
Gadoteridol, Gd-HP-DO3A (Prohance, Bracco, Italy)	Non-ionic cyclic	23.8	17.1	0.23	3 h
Gadopentetate Gd-DTPA (Magnavist, Schering, Berlin, Germany)	Ionic linear	22.1	18.1	0.4	10 min
Gadobenate, Gd-BOPTA, (Multihance, Bracco, Italy)	Ionic linear	22.6	18.4	None	Not available
Gadoterate, Gd-DOTA (Dotarem, Guerbet, France)	lonic cyclic	25.8	18.8	None	>1 month

Nephrogenic systemic sclerosis Examples: nephrogenic systemic

Examples: nephrogenic systemic sclerosis

Mechanism

- Gadolinium is highly toxic
- Patients with normal renal function excrete Gdchelates within 24-48h
- Patients with abnormal renal function may take weeks to excrete the agent
- Dissociation of Gd from the chelate could deposit in soft tissues (documented)
 - Hugh et al. Tissue Gd conc .14-24 ng/mL
- Fibrosis is an inflammatory response to toxic Gd ion.

Residual Gadolinium

Residual Gadolinium!

Extraoribular Sel CM	Total	Promodynamic stability constant	Completional Studeling	Annual of some challes (reg of 1)	Shoots making Measuration half-life at pri 1.00
Cadmentenado, GSOTEN SMCA ESPIRANA, Tyris, SCLOWN, MCS	See one Sees	411	. 11	36.6	Not available
Catholiamole, Ga-Drini, balli, Shimbook, GC, Washinba, WO	Bron ionic Stream	***	14.9	0	16 v
Catchutos, 6x41 COM Kallurid, Shering, Berlin, Germand	epric.	21.8	Not available	Not available	5 nun
Californias, Garan-DOSA (Prohamos, Bracca, Rafu)	eyele eyele	25.8	0.1	0.23	34
Calcumitate 64-0794 Magnanit, Schering Berlin, Germanal	tonic financ	321	18.1	0.4	10 min
California, California, Shaltharea, Bracco, Refo.	Notic Street	32.4	18.6	None	Not evaluable
Cabranas, GOODTA Distance, Guerber,	tenic ryclic	7.1.	***	Store	- I musels

Ultrasound

Ultrasound basics

US basics

Imaging dependent on the speed of sound In tissue

Fate of sound waves in body

Ultrasound probes US Probes

Liver metastases

Ultrasound devices

Evolution of US devices

Ultrasound guided biopsy

US guided biopsy-real time

US advantages

- No radiation
- Real time
- Inexpensive
- Quick, little prep
- No injection

US disadvantages

- Operator dependent
- What you see is all there is
- Difficult to quantify
- Limited access (lungs, brain, bone etc.)

Ultrasound

US Microbubble contrast

SPECT

Single Photon Emission Computed Tomography-SPECT

Single Photon Emission

Computed Tomography

SPECT imaging

SPECT Imaging

 Requires conjugation of a radioactive isotope to a compound of interest which is injected into the patient:

The bone scan:

99mTechnetium-methyl diphosphonate

SPECT detectors

SPECT detectors

Collimation

Collimation cont'd

Collimation reduces the sensitivity and resolution of SPECT by rejecting the majority of events

SPECT agents for cancer

- 99mTc MDP Bone Scan
- 99mTc Pertechnetate (thyroid, salivary gland)
- ²⁰¹Thallium Chloride (parathyroid)
- 111 Indium oxine (WBC labelling)
- ¹³¹lodine (thyroid)

SPECT advantages/disadvantages

SPECT Advantages/Disadvantages

- Relatively inexpensive
- Broad experience
- Disadvantages
 - Radiation exposure
 - Preparation of imaging agent
 - Nuclear Regulatory
 - Scanning is slow, low resolution

Hybrid Imaging

Hybrid Imaging

Positron Emission Tomography

PET

Positron Emission Tomography

Positron and Electron

Annihilation

Gamma rays

Gamma ray orientation

F-18 Deoxyglucose

F-18 Deoxyglucose

Otto Warburg

Lou Sokoloff

18FDG PET Imaging

¹⁸FDG PET Imaging

PET-CT scanners

Metastatic Breast Cancer

Mediastinal and spine metastases (breast)

PET:Advantages and Disadvantages

- Highly sensitive
- Metabolic information
- Better spatial resolution than SPECT
- Combined with CT
- Expense
- Regulatory
- Short half life

Notable PET Agents

- Sodium Fluoride: Bone target
- Fluorothymidine: Cellular Proliferation
- Fluoroestadiol: Estrogen receptor
- Fluorocholine: Membrane Turnover
- Fluoromiso: Hypoxia
- Florbetaben: Amyloid (Alzheimers)
- Zirconium Herceptin: labeled antibody
- Zirconium Oxine: Cell labeling

PET Imaging

- Positron emission tomography (PET) has the advantages of :
 - High energy photon imaging
 - High Sensitivity, Moderate Specificity
 - The ability to correct for attenuation
 - No need for collimation
 - Resolution is still limited

Summary

Presentation	Resolution	Sensitivity	Cost (low-hi)
СТ	СТ	PET	US
MRI	MRI	SPECT	СТ
US	US	US (microbubble)	SPECT
SPECT	PET	MRI	MRI
PET	SPECT	СТ	PET

Cancer Imaging

Presentation	Resolution	Sensitivity	Cost (low-hi)
СТ	СТ	PET	US
MRI	MRI	SPECT	СТ
US	US	US (microbubble)	SPECT
SPECT	PET	MRI	MRI
PET	SPECT	СТ	PET

Cancer Imaging

Presentation	Resolution	Sensitivity	Cost (low-hi)
СТ	СТ	PET	US
MRI	MRI	SPECT	СТ
US	US	US (microbubble)	SPECT
SPECT	PET	MRI	MRI
PET	SPECT	СТ	PET

Cancer Imaging

Presentation	Resolution	Sensitivity	Cost (low-hi)
СТ	СТ	PET	US
MRI	MRI	SPECT	СТ
US	US	US (microbubble)	SPECT
SPECT	PET	MRI	MRI
PET	SPECT	СТ	PET

General Guidelines

- Overall "workhorse" for oncology: CT
- Specialty cancers: brain, liver, prostate: MRI
- Problem solving (e.g cyst vs. solid): US
- Bone mets: SPECT
- Metabolic activity: PET

Imaging of cancer

Imaging of cancer

Imaging of Cancer: