Transforming Growth Factorbeta and Lung Tumorigenesis Sonia B. Jakowlew, PhD **Cancer Training Branch Center for Cancer Training National Cancer Institute** Bethesda, MD jakowles@mail.nih.gov TRACO September 27, 2018

Lung Cancer in 2018, USA

- Most common cause of cancer deaths in both men and women
- 234,030 diagnosed new cases
 121,680 men; 112,350 women
- 154,050 deaths due to lung cancer
 83,550 men; 70,500 women
- Most cases now occur in ex-smokers
 - Average age 70
- < 15% five year survival rate

Transforming Growth Factor-ß (TGF-ß)

Multifunctional regulator of cellular growth Potent inhibitor of normal epithelial cell proliferation Widespread tissue expression Pivotal role in epithelial homeostasis **Association with various types of cancers** Context-dependent inhibition or stimulation of cell proliferation and neoplastic transformation TGF-ß is an attractive candidate for new therapeutic intervention approaches

Transforming Growth Factors: The Beginning

Transforming Growth Factors: The Beginning

Sarcoma Growth Factor – Polypeptide secreted by Moloney murine sarcoma virus-transformed mouse fibroblasts that stimulated normal rat fibroblasts to form colonies in soft agar (transformation assay).

De Larco & Todaro: PNAS 75:4001, 1978

Two classes of TGFs isolated from MSV-transformed cells:

- 1. Competes with EGF for receptor binding (TGF-a)
- 2. Does not compete for EGF binding, but colony forming activity is enhanced by EGF (TGF-β)

Sarcoma growth factor = TGF-α + TGF-β
Roberts, Anzano,...Sporn: Nature 295:417, 1982

1983- Publication of the purification of TGF-ß from:

Human platelets (Rick Assoian) Human placenta (Chuck Frolik)

Bovine kidney (Anita Roberts)

Scale of TGF-ß1 Purification from Bovine Kidney

Extract with 8 liters of acid/ethanol
Centrifuge
Precipitate with 32 liters ether +
16 liters ethanol
Redissolve in 2 liters 1M acetic acid
Apply to 80 liter BioGel P-60 column
Collect 1 liter fractions
Lophilize and redissolve for further chromatography
Final Yield = 6 µg TGF-ß1
purification fold = 230,000; recovery = 10%

The Columns for TGF-beta1 Purification

Clonogenic assay

The Assay: Growth of NRK Cells in Soft Agar

If no TGF-ß is present

- Add mix of media, serum, NRK cells, EGF, sample
- 1 wk/37°/5%CO₂
- Stain
- Count colonies
 >3100 µm² with
 Omnicon Image
 Analysis System

If TGF-ß is present

HPLC Purification

The Final HPLC Purification

TGF beta EUREKA!! TGF-ß: Born at NCI

Michael Sporn & Anita Roberts

TGF beta structure

Sequence of mature TGF-ß1 monomer

Pre-pro TGF-ß 391 amino acids

TGF beta dimer

TGF-β: A Homodimer

TGF beta superfamily

The TGF-β Superfamily

Transforming growth factor beta

Transforming Growth Factor-β

- 25,000 MW disulfide-bonded homodimer
- 3 highly homologous isoforms (TGF-β 1, 2 and 3)
- Principal sources platelets, bone, spleen
- Most cells express TGF-β and its receptors
- Usually secreted in latent, inactive form
- Superfamily of TGF- β s, activins/inhibins, BMPs, GDFs

Major Biological Responses Regulated by TGF-beta inhibits proliferation regulates apoptosis regulates differentiation regulates immune cell function stimulates accumulation of extracellular matrix promotes chemotaxis

The TGF-β Superfamily: Central **Control Modules** for Many Biological Processes **TGF**β is associated with development, immune system function, reproduction, angiogenesis, agining, response to injury, metabolic regulstion and proliferation.

Model for TGF-\beta pathway

TGFR I and II form a phosphorylated heterodimer. BMPs cause activation of Smads 1/5/8. Activin TGFβ causes activation of Smads 2/3. A phosphorylated R-S smad 4 complex forms which is biologically active.

Clinical Observations

Clinical Observations

TGF-ß is a tumor suppressor:

- Germline mutations in TGF-ß pathway components cause familial predisposition to cancer
 - (Smad4 in juvenile polyposis syndrome)
- TGF-ß pathway components are somatically mutated or deleted in some human cancers
 - (Tß-RII in HNPCC, Smad4 in pancreatic cancer)
- Reduced expression of TGF-ß1 signaling pathway components or overexpression of endogenous pathway inhibitors are associated with disease progression

(Tß-RII, Tß-RI, Smad7, Ski)

Clinical Observations

Clinical Observations

TGF-ß is a tumor promoter:

 TGF-ß1 is elevated in many advanced human tumors and correlates with metastasis and/or poor prognosis

(breast, colon, stomach, liver, pancreas, prostate, lung, kidney, bladder, nasopharynx, melanoma, chondrosarcoma, osteosarcoma)

Prostatic adenocarcinoma stained for TGF-ß1:
(Truong et al. Hum Pathol 1993)
TGF-ß sits at the interface between tumor
parenchyma and microenvironment

TGF beta in carcinogenesis

TGF-ß in Carcinogenesis - Hero or villain?

- TGF-ß, a proximal effector of the malignant phenotype
- TGF-ß, potent growth inhibitor and tumor suppressor
- TGF-ß, a pro-metastatic factor

Major Biological Responses Regulated by TGF-beta

Unifying Hypothesis: TGF-ß Switches from Tumor Suppressor to Pro-oncogenic Factor During Cancer Progression

TGF-beta Smad-independent Pathways

TGF-ß Smad-independent Pathways

TGFbeta Smad-independent pathways

TGF-ß Smad-independent Pathways

K-ras Protooncogene

K-ras Protooncogene

- K-ras shows an activational mutation in ~25-50% of human lung adenocarcinomas
- Mutation of even one allele of K-ras increases appearance of lung lesions
- There is cross-talk between Smad-dependent pathway and the Ras/MEK signaling
- Activation of the Ras pathway can modulate TGF-β1 signaling through the Smads
- In-vitro studies show that TGF-β1 dominates over mitogenic effects of ras, but activated ras overrides antiproliferative effect of TGF-β1

TGFβ in Tumor Suppression/Promotion

TGF-ß in Tumor Suppression/Promotion

Decreased Smad levels or activity

Other Smad

Other Smad

Tumor promotion

Compromised effector function in suppressor arm

Compromised effector function in suppressor arm

Tumor promotion

Activated Ras/MAPK = Tumor Promotion

Broad Goal

Broad Goal

 Determine the role of Transforming Growth Factor-ß in the development and malignant transformation of lung epithelial cells

Epithelial Carcinogenesis Section Cell and Cancer Biology Branch Center for Cancer Research NCI

Objectives

Objectives

- Examine the effect of TGF-β1 deletion and K-ras mutation alone and in combination on lung tumor incidence and pathology
- Determine early events in the development of lung lesions and their progression
- Identify potential signal transduction pathway changes with tumorigenesis

Mouse models

Mouse Models

• A/J

• C57BL6 TGF-B1 HT

AJBL6 TGF-ß1 HT

TGF-ß1 HT/K-ras LA

Question

Question

- Does lung tumorigenesis affect the TGF-ß signaling pathway?
- Does the TGF-ß signaling pathway affect lung tumorigenesis?

A/J Mouse Model

A/J Mouse Model

- Susceptible to chemically-induced lung tumors
- Tumors develop in a time-dependent manner
- Hyperplasia, adenoma and carcinoma
- Carcinomas are histologically similar to human lung adenocarcinomas
- Same molecular mutations in both human and mouse lung tumors (ie., over-expression of ras, loss of p53)

Ethyl Carbamate is: metabolized by CYPE1 to vinyl carbamate and vinyl cabamate epoxide as well as degraded by esterase

A/J mouse tumors

Production of Tumors in A/J Mice

TGF-beta1, RI and RII proteins

A/J Mouse Model
TGF-ß1, RI and RII Proteins in Lung Tumors

Decreased TGF-ß RII protein in tumors

Decreased TGF-\beta RII in tumors

TGF-ß in A/J Mouse Model

Decreased TGF-ß RII protein and mRNA

Expression of TGF-β1, RI and RII Proteins and mRNAs

Expression of TGF-ß1, RI and RII Proteins and mRNAs in BP-Induced A/J Mouse Lung Tumors

Decreased TGF-ß RII mRNA and protein in tumors

Tumor suppresion/promotion

TGF-ß in Tumor Suppression/Promotion

Reduced TGF-ß RII = Lung Tumor Promotion

Question

Does deletion of TGF-β1 affect lung tumorigenesis?
C57BL/6 TGF-β1 Mouse

TGF-beta1 knockout mice

The C57BL/6 TGF-ß1 Knockout Mouse

Increased tumor incidence in TGF-ß1 HT mice

Mouse models

AJBL6 TGF-ß1 HT Mouse Derivation

A/J X C57BL/6 TGF-B1WT TGF-B1WTAJBL6 TGF-B1HT+TGF-B1WT(F1)

Carcinogen

Lung Tumors

TGF-beta1 in HT and WT mice

AJBL6 TGF-ß1 HT and WT Mouse

Reduced expression of TGF-ß1 in HT compared to WT

Production of Tumors

Production of Tumors

Groups
TGF-ß1 HT
TGF-ß1 WT

AJBL6 TGF-β1 HT & WT Mice

Carcinogen-Induced Lung Tumorigenesis in AJBL6 TGF-ß1 HT & WT Mice

Increased tumor incidence and multiplicity and decreased tumor latency in TGF-ß1 HT mouse

TGF-beta RII

TGF-ß RII Protein in Lung Lesions from AJBL6 TGF-ß1 WT and HT Mice

Decreased TGF-ß RII in tumors of TGF-ß1 HT mice

Relative TGF-ß RII mRNA Levels
Lesions from AJBL6 TGF-ß1 HT
Mouse Lungs Treated with Ethyl
Carbamate
Decreasing TGF-ß RII mRNA with increasing
lung tumorigenesis

Question

Does deletion of TGF-β1 and mutation of K-ras affect lung tumorigenesis? TGF-β1 HT/K-ras LA mouse

TGF-beta1 and K-ras

To Study the Interplay of TGF-β1 and K-ras: Generation of TGF-β1/ K-ras LA Mice

```
TGF-ß1 K-ras
HT X LA
(C57Bl/6) (SV 129)

TGF-ß1 HT/K-ras LA - HT/LA Double Mutant
TGF-ß1 WT/K-ras LA - WT/LA Single Mutant
TGF-ß1 HT/K-ras WT - HT/WT Single Mutant
TGF-ß1 WT/K-ras WT - WT/WT Wild Type
```

TGF-beta1 and K-ras

TGF-β1 and K-ras Mouse Lungs

TGF-B1 HT, K-ras LA

TGF-ß1 WT, K-ras LA

Mouse Survival

Effect of TGF-β1 Gene Deletion and K-ras <u>Mutation on Mouse Survival</u>

Mouse survival

Effect of TGF-β1 Gene Deletion and K-ras <u>Mutation on Mouse Survival</u>

Decreased lifespans in HT/LA and WT/LA mice

Lung Pathology

Pathology of Lung Lesions

Increased hyperplasia & adenoma in WT/LA Increased carcinoma in HT/LA

TGF-beta1 and RII

TGF-β1 and TGF-β RII in Lung Lesions

TGF-β1

TGF-β1

TGF-β RII

TGF-β RII

Reduced TGF-ß1 & RII in HT/LA adenocarcinomas

TGF-beta RII and Smad 3

TGFB RII and Smad3 in Lung Tumorigenesis

HT/LA: Expedited TGF-ß RII reduction & Smad3 production

TGF-beta pathway

TGFβ Pathway in HT/LA Lung Tumorigenesis

Western Blot:

TGF B RII Expedited TGF-B RII reduction

Smad3 Expedited Smad3 production

Smad4 Reduced Smad4 production

Smad7 Reduced Smad7 production

K-ras Expedited K-ras production

Raf-1 Expedited Raf-1 production

Real Time RT-PCR:

Reduced Smads 2, 3, 4 & 7 in adenomas Reduced TGF-ß RII & Smads in carcinomas

Apoptotic index

Apoptotic Index in WT/LA & HT/LA Mouse Lung Adenomas

Reduced apoptosis in HT/LA adenomas

Tumor suppression/promotion

TGF-ß in Tumor Suppression/Promotion

- Decreased TGF-ß RII = Lung Tumor Promotion
- Activated Ras/MAPK = Lung Tumor Promotion
- Decreased Smad4 = Lung Tumor Promotion
- Compromised Apoptosis = Lung Tumor Promotion

Anti TGFB compounds currently

in Clinical Trials

Class	Compound	Target	Company	Phase	Disease
Antibodies	Fresolumimab	TGF-ß 1-3	Genzyme	Ph I	RCC & Melanoma
				Ph I - r	Met Breast Cancer
				Ph I - r	Advanced Melanoma
Antibody Targeting: ALK1	PF-03446962	ALK1	Pfizer	Ph I - r	Advanced Solid Tumors
Antisense Oligonucleotides	Trabedersen	TGF-ß2 mRNA	Antisense Pharma	Ph I	Pancreatic & Colon
				Ph IIb	Melanoma & Glioma
				Ph III - r	Glioblastoma
Receptor Kinase Inhibitors	LY2157299	ALK5	Eli Lilly	Ph Ib/Iia - r	Glioma, Hepatocellular
				Ph II - r	Pancreatic Cancer
				Ph Ib/II - r	Pancreatic Cancer
Combined TGF-ß + Vaccine	Lucanix	TGF-ß2	NovaRx	Ph II, Ph II - r	NSCLC, NSCLC
	TGF-B2 + GMCSF Exp Vector	TGF-ß2 + GMCSF	MCMRC	Ph I - r	Advanced Cancer

Anti-TGFB Compounds currently in Clinical Trials

Class	Compound	Target	Company	Phase	Disease
Antibodies	Fresolumimab	TGF-ß 1-3	Genzyme	Ph I	RCC & Melanoma
				Ph I - r	Met Breast Cancer
				Ph I - r	Advanced Melanoma
Antibody Targeting: ALK1	PF-03446962	ALK1	Pfizer	Ph I - r	Advanced Solid Tumors
Antisense Oligonucleotides	Trabedersen	TGF-ß2 mRNA	Antisense Pharma	Ph I	Pancreatic & Colon
				Ph IIb	Melanoma & Glioma
				Ph III - r	Glioblastoma
Receptor Kinase Inhibitors	LY2157299	ALK5	Eli Lilly	Ph Ib/Iia - r	Glioma, Hepatocellular
				Ph II - r	Pancreatic Cancer
				Ph Ib/II - r	Pancreatic Cancer
Combined TGF-ß + Vaccine	Lucanix	TGF-B2	NovaRx	Ph II, Ph II - r	NSCLC, NSCLC
	TGF-B2 + GMCSF Exp Vector	TGF-ß2 + GMCSF	MCMRC	Ph I - r	Advanced Cancer

Acknowledgements

Acknowledgements

Epithelial Carcinogenesis Group

Sonia B. Jakowlew
Jerry Angdisen
Yang Kang
Alena Naumova
Jyotsna Pandey
Sarah Umphress

MIT
Tyler Jacks
Kim Mercer