Small cell lung cancer

Haobin Chen, M.D., Ph.D.
Assistant Clinical Investigator
TGIB, NCI

Outline

- Introduction
- Genetic abnormalities of small cell lung cancer
- SCLC as a resistance mechanism to EGFR TKI in lung adenocarcinoma
- Examples of translational medicine: Story of Rova-T
- Examples of translational medicine: Immune checkpoint inhibitors
- Other promising agents under clinical development
- Extrapulmonary small cell carcinoma

Introduction

SCLC 101

• Small-cell lung cancer (SCLC) accounts for 10% to 15% of all lung cancer cases, and is closely linked to the intensity and duration of tobacco smoking.

 When compared with NSCLC, SCLC tends to disseminate earlier in the course of its natural history and displays a more aggressive clinical behavior.

 SCLC is also commonly associated with paraneoplastic endocrinopathies, such as Cushing syndrome and Lambert-Eaton myasthenic syndrome.

SCLC morphology

Morphology of SCLC

Small cell lung cancer (SCLC) is also known as oat cell carcinoma. Its morphology resembles oat grains and appears as small oval cells with scanty cytoplasm.

Image obtained from Pathpedia.com

Staging of SCLC: 2-stage system

- Limited disease-SCLC (30-40%)
 - Definition: Tumor and nodes confined to one hemithorax and able to be encompassed within a single radiotherapy port
 - Treatment: Combination chemotherapy with thoracic radiation
 - Median Overall survival: 15-20 months
- Extensive disease-SCLC:
 - Definition: All else.
 - Treatment: Combination chemotherapy
 - Median Overall survival: 8-13 months

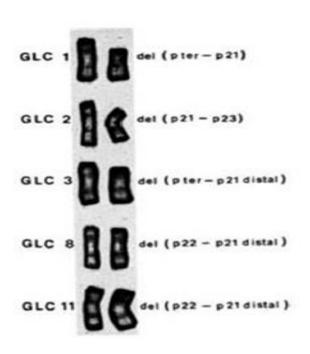
Systemic therapy of SCLC

- It was learned quite early in the 1970s that combination therapy produces superior survival compared with single-agent treatment based on several randomized trials.
- First-line therapy: platinum + etoposide
- Second-line therapy: Topotecan

SCLC is considered as a recalcitrant cancer

- Recalcitrant Cancer Research Act of 2012.
- Recalcitrant cancer:
 - Have a 5-year relative survival rate of less than 20%
 - Estimated to cause the death of at least 30,000 individuals in the United States per year.
- NCI identified four major obstacles to progress in 2014:
 - Continuing risk of developing the disease that remains for decades after smoking cessation.
 - Most patients have widely metastatic tumors at the time of diagnosis.
 - Rapid development of resistance to chemotherapy in more than 95% of SCLC patients.
 - Lack of tumor tissue for clinical, molecular, and cell biological studies.

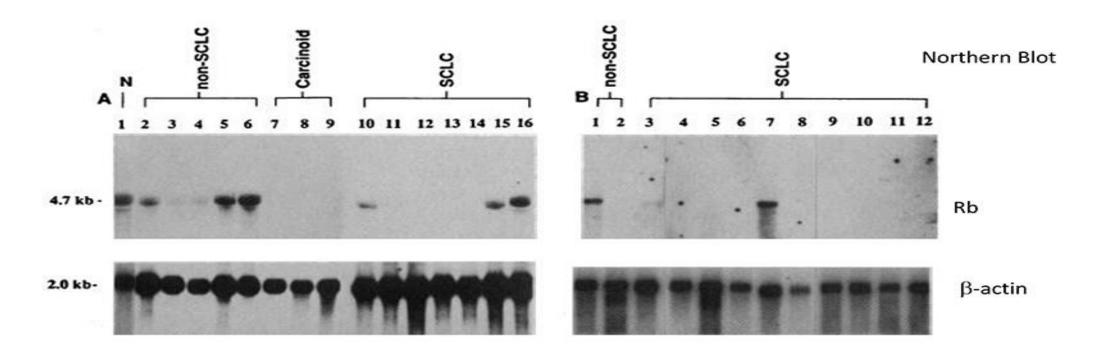
SCLC:


<7%

~30,000 deaths/yr

Genetic abnormalities of SCLC

Chromosome 3p deletion


Genetic abnormalities of SCLC- Deletion of 3p21

- Chromosomal region 3p21 was found to be consistently deleted not only in SCLC (almost 100%), but in all major types of lung cancer (more than 90%).
- Chromosome 3p abnormalities appear early in the pathogenesis of lung cancer and are found as clonal lesions in the smoking damaged respiratory epithelium including histologically normal epithelium as well as in epithelium showing histologic changes of preneoplasia.

RB loss

Genetic abnormalities of SCLC- Loss of Rb gene

Harbour W et al. Science. 1988, 241:353-7.

TP53 inactivation

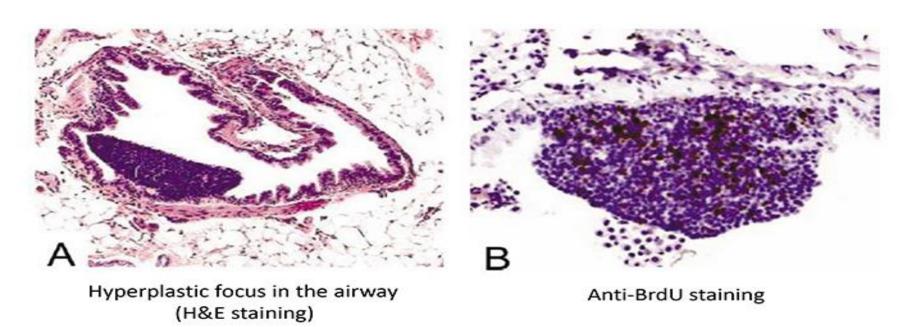
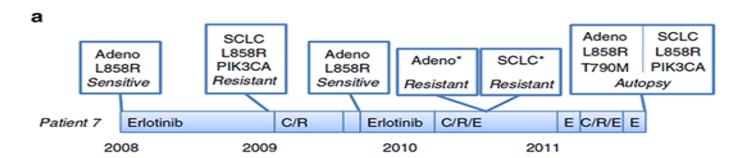

Genetic abnormalities of SCLC – Inactivation of TP53 gene

Table 1. Abnormalities of p53 in lung cancer lines. Terms and symbols for mRNA levels are as follows: +, easily detectable p53 transcripts comparable to levels found in normal lung; reduced or trace, greatly reduced amount of transcript compared to normal lung; undetectable, undetectable by both Northern blot analysis and the RNase protection assay. Full designation of the cell lines includes the prefix "NCI". All but H60, H69, H82, H187, H345, H378, and H510 were established from patients before treatment.

Type of mutations	mRNA level	Tumor cell type	Cell line
Homozygous deletion Homozygous deletion with truncated mRNA	Undetectable Reduced	Bronchioloalveolar Extrapulmonary small cell	H358 H660
DNA rearrangement	Undetectable	Adenocarcinoma	H969
Abnormal size mRNA	+ + + Trace	Small cell Adenocarcinoma Adenosquamous Small cell	H526 H676 H647 H82
Point or small mutation	+ + + + + + Reduced Reduced	Small cell Pulmonary carcinoid Adenocarcinoma Bronchioloalveolar Adenosquamous Large cell Small cell Adenocarcinoma	H1436, H1450 H727 H23 H820 H125 H661 H889, H1092 H920
None detected	Trace Reduced	Small cell Squamous	H60, H69, H209, N417 H520
None detected	+ + + +	Small cell Extrapulmonary small cell Adenosquamous Squamous Large cell	H187, H345, H378 H510 H596 H226 H460, H1385

TP53 and RB inactivation


Conditional inactivation of Trp53 and Rb1 led to SCLC in mouse model

SCLC became detectable within 196-350 days in the mouse model with conditional KO of TP53 and Rb1.

SCLC conversion

SCLC conversion as a resistance mechanism to EGFR TKI in lung adenocarcinoma: Loss of TP53 and Rb genes

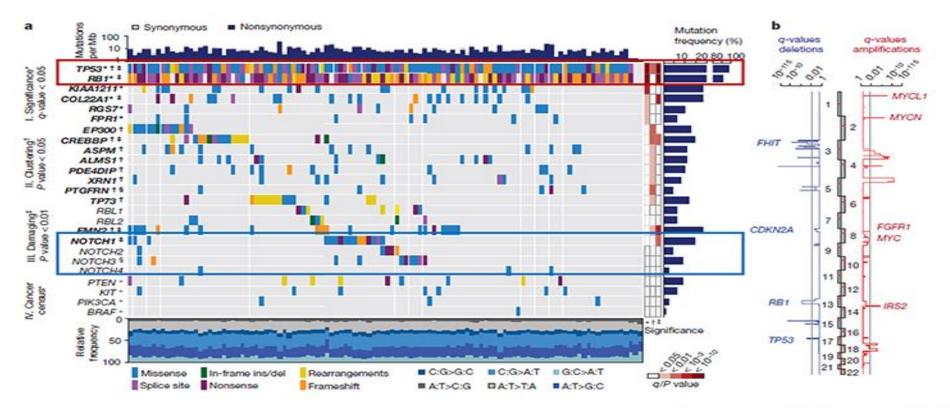
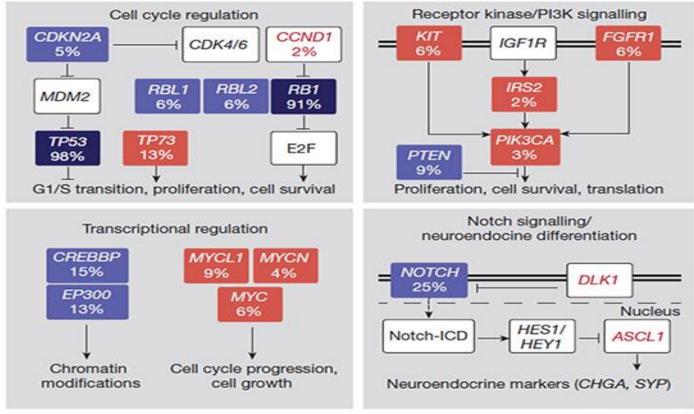

Sample	Normal liver	Diaphragm tumour	Lung tumour	Liver tumour
Histological features	Normal tissue	Adenocarcinoma	SCLC	SCLC
Number of reads	179,298,190	350,864,233	388,189,232	318,482,313
Average coverage	146	287	319	253
Primary EGFR mutation	WT	L858R	L858R	L858R
Secondary EGFR mutation	WT	T790M	WT	WT
PIK3CA status	WT	WT	E545K	E545K
TP53 status	WT	WT/Δ154-163	-/Δ154-163	-/Δ154-163

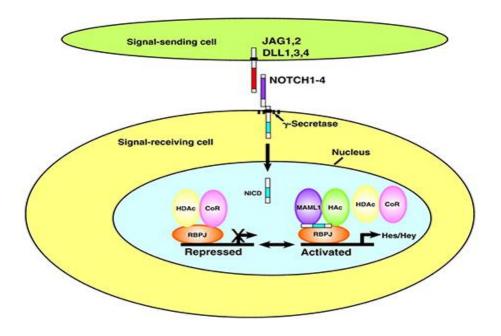
Table 1	Table 1 RB status of TKI-resistant patients.						
Patient	Cancer type	Resistance	Histology	RB status	Detection method		
1	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	NE	Neg	IHC/genetic		
	Lung	Post	NE	Neg	IHC/genetic		
2	Lung	Pre	Adeno	Pos	IHC		
	Lung	Pre	Adeno	Neg	IHC		
	Lung	Post	NE	Neg	IHC		
3	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	NE	Neg	IHC		
4	Lung	Post	NE	Neg	IHC		
5	Lung	Post	NE	Neg	IHC		
6	Lung	Pre	Adeno	Neg	IHC		
	Lung	Post	NE	Neg	IHC/genetic*		
7	Lung	Post	Adeno	Pos	IHC/genetic		
	Lung	Post	NE	Neg	IHC/genetic		
	Lung	Post	NE	Neg	Genetic		
8	Lung	Post	Adeno	Pos	IHC		
	Lung	Post	NE	Neg	IHC		
9	Lung	Post	NE	Neg	IHC		
10	Lung	Post	Adeno	Neg	IHC		
11	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	Adeno	Pos	IHC		
12	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	Adeno	Pos	IHC		
13	Lung	Post	Adeno	Pos	IHC		
14	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	Adeno	Pos	IHC		
15	Lung	Post	Adeno	Pos	IHC		
16	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	Adeno	Pos	IHC		
17	Lung	Pre	Adeno	Pos	IHC		
	Lung	Post	Adeno	Pos	IHC		
18	Lung	Post	Adeno	Pos	IHC		
19 [†]	Lung	Intrinsic	NE	Neg	IHC		

Niederst MJ et al. Nat Commun. 2015;6:6377.

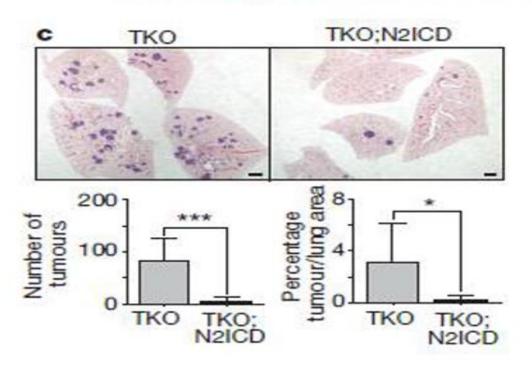

Genetic abnormalities

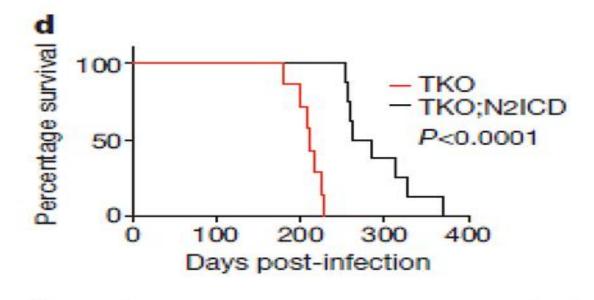
Genetic abnormalities of SCLC: WES Analysis

Altered pathways


Pathways that are recurrently affected in SCLC

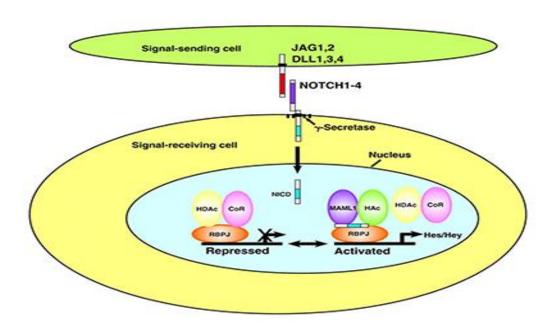
George et al. Nature 2015;524(7563):47-53

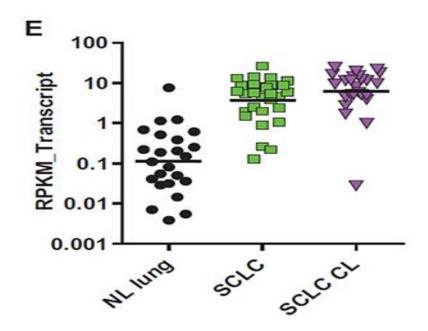

Notch signaling


Notch Signaling Pathway

Notch decreases SCLC growth

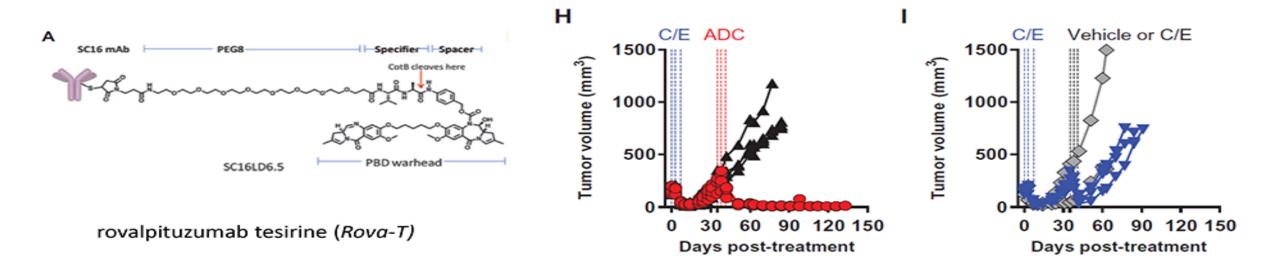
Forced activation of Notch signaling decreased SCLC growth in a transgenic mouse model





Examples of Translational medicine: Story of Rova-T

DLL3 overexpression


Overexpression of DLL3 in SCLC

ROVA-T

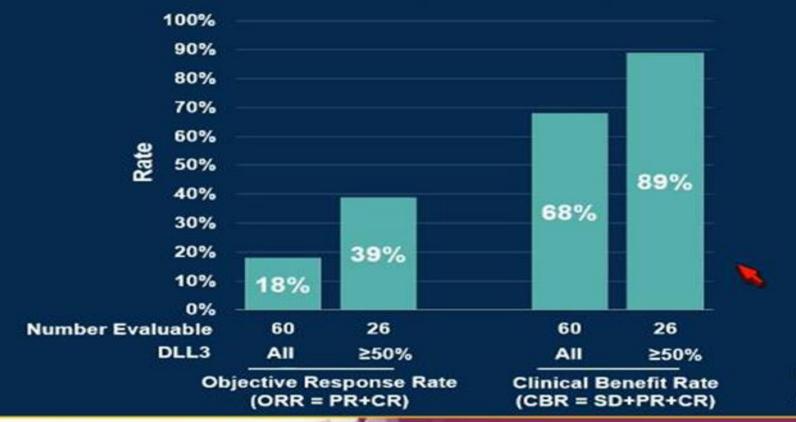
Rova-T: a DLL3 targeting antibody-drug conjugate

Subject characteristics

Subject Baseline Characteristics (n=74)

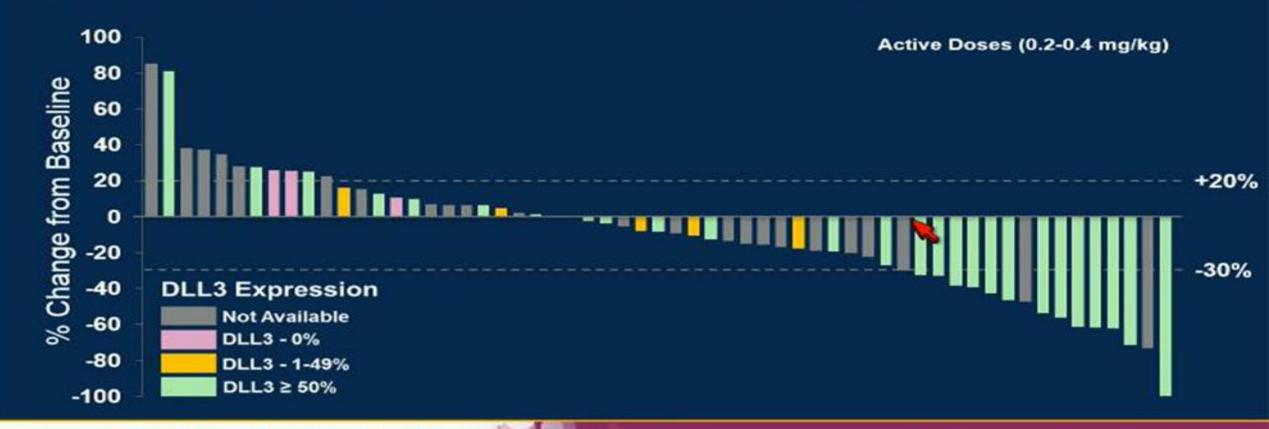
Characteristic	Number (%)
Median Age, years (range)	61 (38-81)
Female	32 (43%)
Baseline ECOG: 0 / 1 / 2	21 (28%) / 50 (68%) / 3 (4%)
Extensive Disease at Presentation	56 (76%)
Response to 1 st line therapy Sensitive ¹ Resistant ² Refractory ³	39 (53%) 23 (31%) 7 (9%)
Not evaluable Treatment-Free Interval (before 2 nd line)	5 (7%) 4.1 months (0.2-89.1)
Hx CNS mets (Per Investigator)	21 (28%)

Characteristic	Number (%)
Prior Lines of Therapy: 1 / 2	39 (53%) / 35 (47%)
Prior treatments Platinum/Etoposide Platinum/Other Platinum/Etoposide/Other Topotecan Temozolomide ABT-888 Radiation Other	71 (96%) 5 (7%) 7 (9%) 8 (11%) 10 (14%) 8 (11%) 61 (82%) 16 (22%)
Tumor DLL3 Expression (any intensity): ≥ 1% of tumor cells ≥ 50% of tumor cells	42/48 (88%) 32/48 (67%)


^{1.2} Best response of SD or better to 1st line therapy, and 1st-2nd line TFI ¹≥ 90 days or ²<90 days.</p>

³ Best response of PD to 1st line therapy.

RECIST responses


RECIST Confirmed Responses per Investigator

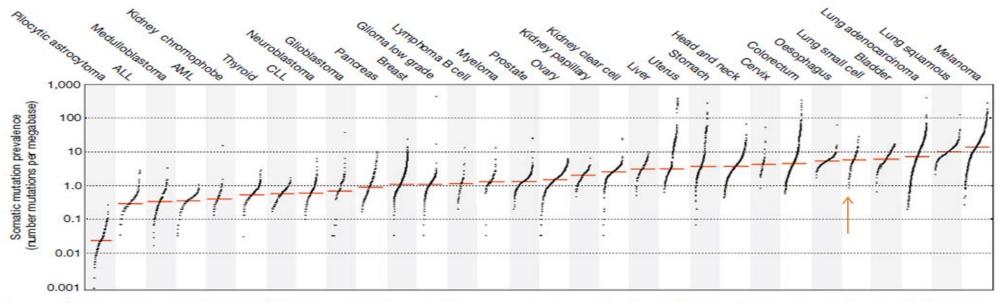
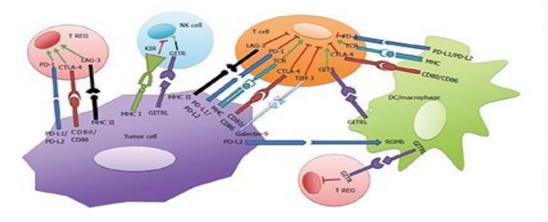
Response-Evaluable Subjects Active Doses (0.2-0.4 mg/kg)

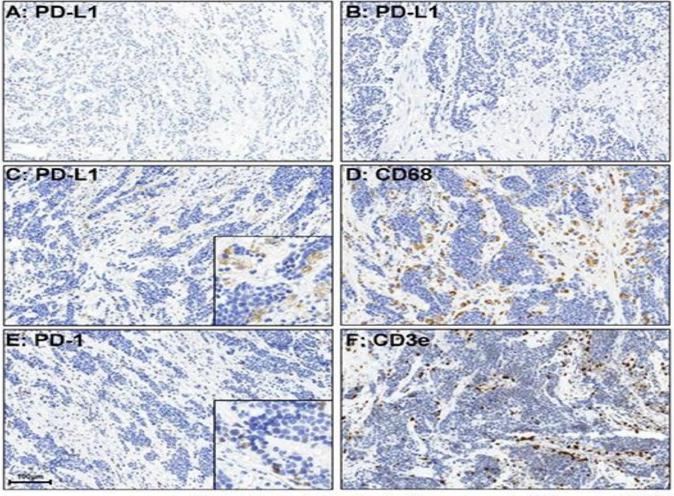
Best responses

Immunotherapy in SCLC

Mutation loads

Mutation loads in different cancer types


Figure 1 | The prevalence of somatic mutations across human cancer types. Every dot represents a sample whereas the red horizontal lines are the median numbers of mutations in the respective cancer types. The vertical axis (log scaled) shows the number of mutations per megabase whereas the different

cancer types are ordered on the horizontal axis based on their median numbers of somatic mutations. We thank G. Getz and colleagues for the design of this figure²⁶. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia.

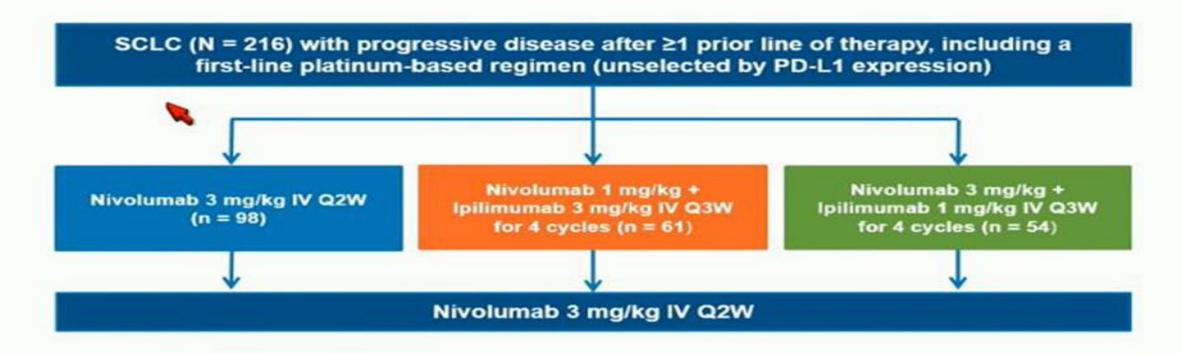
PD-1 and PD-L1

PD-1 and PD-L1 are expressed in the tumor stroma of small cell carcinoma.

Schultheis AM, et al. European J of Cancer (2015)

Patel et al. World J Immunol 2015; 5(1):1-15

IHC staining


IHC staining of PD-1/PD-L1 in SCLC Specimens

	*				
					n (%)
A					
Sample		Pulmon	ary		61 (65%)
		Extrapu	lmonary		33 (35%)
		Total	170		94
Origin		Primary	7		45 (48%)
		Metasta	sis		49 (52%)
		Total			94
Specimen		Resection	on		51 (54%)
		Biopsy			43 (46%)
		Total			94
PD-1			PD-L1		
	Tumour	Stroma	\$=	Tumour	Stroma
В					
Cases	94	94	Cases	92	92
Positive	O	45	Positive	0	17
%	0.0%	47.9%	0	0.0%	18.5%

ρ(PD-1, PD-L1): 0, 35.

Clinical Trial

Nivolumab +/- Ipilimumab in Recurrent SCLC: CheckMate 032 Study Design

Patient characteristics


Nivolumab +/- Ipilimumab in Recurrent SCLC: Baseline Patient Characteristics

	Nivolumab-3 (n = 98)	Nivolumab-1 + lpilimumab-3 (n = 61)	Nivolumab-3 + Ipilimumab-1 (n = 54)
Median age, years (range)	62.5 (45-81)	66.0 (37-84)	61.0 (34–74)
Male, %	62	57	59
Race, % White Black/African American Other	93 3 4	98 2 0	96 0 2
Prior treatment regimens, % 1 2–3 >3	41 56 3	52 38 10	43 52 6
Current/former smoker, %	97	93	89
PD-L1 expression level,% ≥1%a <1%a Not evaluable/missingb	14 86 30	24 76 39	13 88 26

^{*}Percentage of PD-L1 evaluable patients; *Percentage of all patients in cohort

Clinical results

14 (23%; 13-36) 1 (2%) 13 (21%) 13 (21%)	0 10 (19%; 9-31) 0 10 (19%) 9 (17%)
13 (21%)	10 (19%)
13 (21%)	10 (19%)
13 (21%)	0 (17%)
	3 (1/ /0)
23 (38%)	29 (54%)
8 (13%)	6 (11%)
3 (5%)	0
2-1 (1-4-2-8)	1-4 (1-3-2-7)
	3 (5%)

Scott A. et al. Lancet Oncol. 2016;17(7):883-95.

Adverse events

Nivolumab +/- Ipilimumab in Recurrent SCLC: Treatment-Related AEs in ≥10% of Patients

	Nivolumab-3 (n = 98)		Nivolumab-1 + Ipilimumab-3 (n = 61)		Nivolumab-3 + Ipilimumab-1 (n = 54)	
	Any grade, %	Grade 3-4, %	Any grade, %	Grade 3-4, %	Any grade, %	Grade 3-4, %
Total treatment-related AEs	53	13	79	30	74	19
Fatigue	11	1	26	0	22	0
Pruritus	11	0	20	2	9	0
Diarrhea	7	0	21	5	17	2
Nausea	7	0	11	2	7	0
Decreased appetite	6	0	7	0	11	0
Hypothyroidism	3	0	16	2	7	0
Hyperthyroidism	2	0	11	0	6	0
Rash	2	0	20	3	7	0
Rash, maculopapular	1	0	13	3	4	0
Lipase increased	0	0	11	8	0	0
Treatment-related AEs leading to discontinuations		5	1	1		7

- Two treatment-related deaths occurred in the nivolumab-1 + ipilimumab-3 arm: one due to myasthenia gravis and one due to worsening of renal failure. One treatment-related death due to pneumonitis occurred in the nivolumab-3 + ipilimumab-1 arm
- · Treatment-related limbic encephalitis was reported in 2 (1%) patients; 1 case resolved, and outcome for 1 case was not reported
- Treatment-related limbic encephants was reported in 2 (1%) patients, 1 case resolved, and outcome for 1 case was not reported.
 Treatment-related pneumonitis occurred in 8 (4%) patients; 6 cases resolved, outcome for 1 case is unknown, and 1 case was fatal.

Scott A et al. 2016 ASCO: abstr 100

Other promising agents that are under clinical development

Wee 1 inhibitor

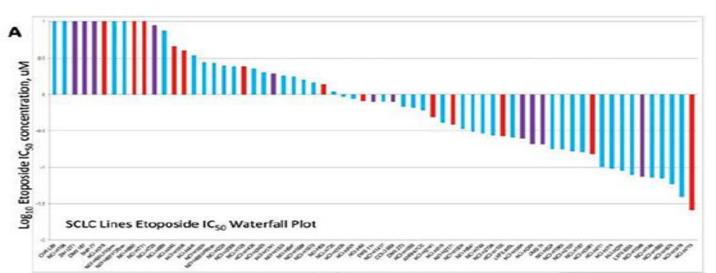
PARP inhibitor

ATR inhibitor

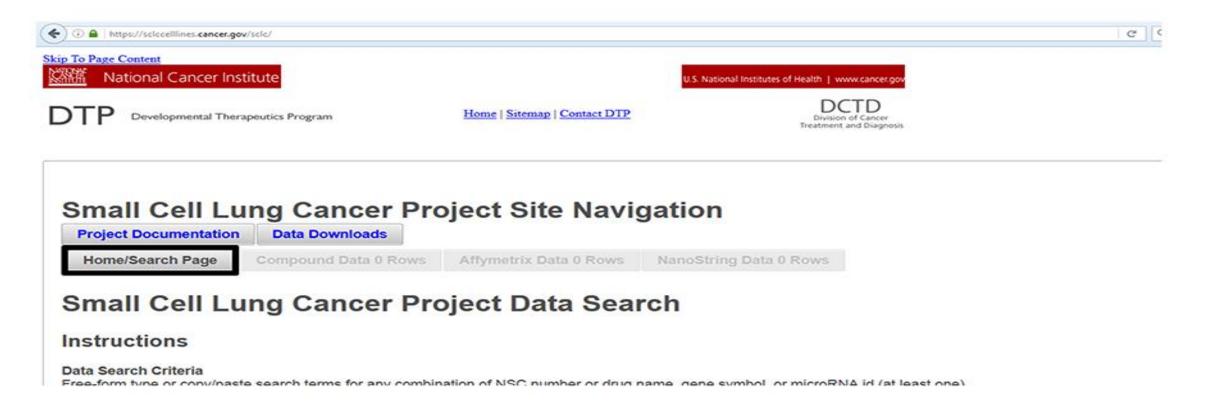
BET bromodomain inhibitor

Waterfall plot

JNCI J Natl Cancer Inst (2016) 108(10): djw122


doi: 10.1093/jnci/djw122 First published online May 31, 2016 Article

ARTICLE


Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA

Expression

Differential sensitivity to various classes of oncology drugs and investigational agents.

SCLC website

https://sclccelllines.cancer.gov/sclc/

Extrapulmonary small cell carcinoma

Extrapulmonary small cell carcinoma (EPSCC)

Table 1
Frequency of EPSCC per site of origin.

	Percentage of SCC/total per site of origin	Estimated number of patients in US per year*
Pulmonary	15-20%	32,250-43,000
Oesophagus	0.8-2.4%	130-395
Larynx	0.5-1%	60-120
Bladder	0.3-1.0%	200-680
Cervix	±1%	±110
Prostate	±2%	±250
Unknown primary	7–30% of all EPSCC	70–300

SCC denotes small cell carcinoma; EPSCC denotes extrapulmonary mall cell carcinoma.

http://www.cancer.gov/cancertopics/pdq.

Summary

SCLC is a recalcitrant cancer and new therapy is urgently needed.

Inactivation of TP53 and RB1 are almost universal in SCLC.

 Newer therapies are on the horizon: Rova-T ADC and Immunotherapy with immune checkpoint inhibitors