TRACO – Introduction to Radiation Oncology

Elizabeth Nichols, MD
Assistant Professor
University of Maryland
Marlene and Stewart Greenebaum Cancer Center
10/12/16
enichols1@umm.edu
Disclosures

• Disclosures: None
Outline

• Goals of cancer therapy
• Goals of radiation therapy
• Basics of radiation oncology
 – Radiation Physics
 – Radiation Biology
 – Radiation Therapy
 – Patient presentations
• The future of radiation oncology
Principles of cancer therapy

• Minimize therapy
 • Toxicity, time, cost

• Minimize negative impact on quality of life
 • Toxicity, function, cosmesis

• Improve quality of life
 • Palliation, organ preservation

• Maximize impact on quantity of life
 • Cure and remission

• Improve outcomes
 • Research
Radiation Oncology

The discipline of radiation oncology

Radiation Biology

E=mc^2

Physics

Radiation Therapy
The Physics of Radiation Oncology

Just the basics
The Physics of Radiation Oncology

• What is radiation?
 – “the complete process by which energy is emitted by one body, transmitted through an intervening medium or space, and absorbed by another body.”
Types of Radiation

Particles and photons
The Electromagnetic Spectrum

The electromagnetic spectrum
X Rays

How are x rays generated?
The Linear Accelerator

The linear accelerator

- High energy photons and electrons
- Uniform beam characteristics
- Precise field shaping
- Precise delivery
 - The gantry rotates
 - The couch rotates
 - The patient is immobilized
Radiation Planning Techniques

- **3D CRT**
 - Use CT to plan from anatomy, allows freedom of multiple angles
 - “Virtual patient”

- **IMRT**
 - Dose cloud, complex
 - Inverse planning
Intensity Modulated Radiation Therapy

- Modulation of the intensity across each beam
- Allows customization based on a specific planning objective
 - Treat tumor to 50 Gy, keep bladder dose below 20 Gy.
Intensity Modulated Radiation Therapy

Intensity modulated radiation therapy
Enables use of higher and more sculpted tumor dose
Brachytherapy

• Placing a radiation source inside or adjacent to the tumor

• Rapid dose fall-off allows maximal sparing of normal tissues (no “going trough” normal tissue to get to the tumor)

• Used commonly for tumors
 – in body cavities (cervix, endometrium, vagina, nasopharynx)
 – close to the surface (prostate, sarcoma, tongue, lip, breast)
Plaque Simulator Isodose Plot
High Dose Rate Branchy

High dose rate brachy (HDR) Example – Ring and Tandem

Used to treat cervical and endometrial cancer
Stereotactic Radiosurgery

- Historically used to treat brain tumors (Gamma Knife)
- Technology has developed where we can now treat tumors in other body sites (Stereotactic Body Radiation Therapy)
 - Lung
 - Liver
 - Bone
- Cyber knife is a brand of machine that delivers stereotactic radiosurgery
Radiation Biology
Radiation Survival Curve

Radiation survival curve

![Graph showing the radiation survival curve with markers for densely ionizing (neutrons or α-rays) and sparsely ionizing x-rays.](image-url)
Fractionation

Rationale: take advantage of the slightly improved survival of normal tissue to smaller doses, amplified over many treatments.
The 4 “R”s of fractionated radiation

• Repair
 – Healthy cells repair DNA damage (so do tumor cells unfortunately)

• Reassortment (redistribution)
 – Radiation causes cells to accumulate in certain phases of the cell cycle

• Reoxygenation
 – Tumors reoxygenate after radiation

• Repopulation
 – Tumor and normal cells repopulate between doses of radiation
Repair

- DNA is the primary target of radiation
 - Indirect
 - Direct
 - SSB are repaired
 - DSB are key!

- Particles
- Photons

Cells that correct DNA dsb go on to divide another day....REPAIR.
Redistribution

Radiation induces cell cycle arrest to repair DNA damage....REDISTRIBUTION
Cell Cycle and Radiation Sensitivity

Cell cycle and radiation sensitivity

M > G2 > ES > LS Redistribution into a sensitive phase can matter!
Reoxygenation

Following radiation, tumors reoxygenate rapidly... REOXYGENATION
Radiation Modifiers

- Tumor Control (%)
- Dose (Gy)
- Normal Tissue

Left Panel:
- 60Gy
- 65% Local Control
- 15% Normal tissue damage

Right Panel:
- 60Gy
- DEF=1.4
- Radiosensitization
- 75% Local Control
- 15% Normal tissue damage
Radiation Modifiers

60Gy
65% Local Control
15% Normal tissue damage

70Gy
75% Local Control
15% Normal tissue damage
Radiation Targets

• Single Target Agents
 – Growth factor receptors (EGFR, VEGFR)
 – DNA repair proteins (DNA-PK, Rad51)
 – Transcription factors (NFkB, p53)
 – Signal transduction proteins (Ras, PI3K, c-Abl)

• Multi-target Inhibition
 – Chaperone proteins (HSP90 inhibition)
 – Microenvironment (angiogenesis, vasculature)
 – Epigenetic modification

• Radiation Inducible Targets
 – Antigens or receptors (Fas, CEA)
Issues for Target/Agent Development

• Mechanism
 – Cell type or condition specific

• Method of Targeting
 – Antibodies (EGFR, VEGFR)
 – Small molecules (Gleevec, Flavopiridol)
 – Gene therapy (TNFerade)

• Therapeutic ratio
 – Tumor > normal cells (Rad51)
Immunomodulatory agents

Immunomodulatory Agents

- Can be combined well with RT
 - Abscopal effect
- Types of agents
 - PD1
 - PDL1
 - Others
Radiation Therapy

Clinical practice
Goals of radiation therapy

• Cure
 – Cancer localized to one organ or region

• Palliation
 – Cancer disseminated to multiple organs that are causing bothersome symptoms
Indications for radiation therapy

- **Cure**
 - Prostate cancer
 - Other urologic cancers
 - Breast cancer
 - Lung cancer
 - Head and Neck Cancer
 - Gynecologic Cancers
 - Pediatric Cancers
 - CNS tumors
 - Skin cancers

- **Palliation**
 - Bone pain
 - Shortness of breath
 - Neurologic symptoms
 - Pain from a space occupying lesion
The Oncology Team

The oncology team

- Radiation Oncology
- Medical Oncology
- Surgery
- Social work and Support services
- Primary Care
- Radiology
- Other specialties
Develop a multimodality plan

• Surgery
• Radiation
• Systemic therapy
 – Chemotherapy
 – Targeted agents
• Other localized therapies
 – Focal ablation techniques
 – Focal drug delivery
Treatment Process

The radiation therapy treatment process

- Following consultation visit
- CT simulation (planning session)
- Transfer of images to treatment planning system
- Fusion of outside images
The radiation therapy treatment process

• Contouring (normal structures, target structures)
• Creation of plan (dosimetry)
• Evaluation of plan (by MD)
• Evaluation of plan (by physics)
• Transfer of plan to treatment machine
• Treatment delivery
Patient Presentations
The treatment process – Patient A

• Develop a treatment plan (multimodality)
• Determine the appropriate RT modality
• Identify a target
• Identify surrounding normal tissue at risk
• Create a treatment plan (radiation)
• Deliver the treatment
• Follow the patient
Patient A

– 55 yo F with new lump in her left breast
– Suspicious abnormality on mammogram
– Biopsy consistent with infiltrating ductal carcinoma
– No family history of breast cancer
Develop a treatment plan

- Treatment options
 - Mastectomy
 - Breast Conserving Therapy (lumpectomy + RT)
Patient A

- Selects breast conservation
- Lumpectomy and sentinel lymph node biopsy
- Pathology reveals a 3 cm tumor and 4 axillary lymph nodes
- The patient receives chemotherapy
- Returns to radiation oncology
Determine the RT Modality

Determine the RT modality

- External beam radiation
 - Protons
 - Photons
 - Electrons

- Brachytherapy
 - Sealed sources
 - Unsealed sources
Identify the target and normal tissue - Simulation

Identify the target and normal tissue - Simulation
Create A Plan

Create a plan
Deliver The Treatment

Deliver the treatment
Patient B

- 54 yo M with an elevated PSA on routine exam
- No prior medical problems
- Biopsy consistent with adenocarcinoma of the prostate, Gleason score of 6
Develop a treatment plan

- Surgery
- Surgery and radiation (based on surgical findings)
- Radiation
 - Brachytherapy
 - External beam RT
 - Combination
- Radiation and hormonal therapy
Create a plan
Image Guided Radiation Therapy

Image guided radiation therapy

- Calypso
- Gold fiducial markers
Deliver the Treatment

Deliver the treatment
Is it all just that easy?

• Normal tissue toxicity
 – Acute effects
 – Late effects

• Stem cell depletion, chronic oxidative damage, vascular destruction, fibrosis, and more

• Radiation is dosed to normal tissue, NOT tumor!
Lung - Fibrosis

Diagram showing pathways and interactions involved in the development of lung fibrosis. The diagram highlights the role of different proteins and signaling molecules, including TGFβ, Smad proteins, and their interactions with the extracellular matrix. The images on the right side of the slide show CT scans of the lungs, possibly illustrating the effects of fibrosis on lung structure.
Lymphedema

Lymphedema – vessel damage
Mucositis

Mucositis – stem cell depletion
Where do we go from here?
The Evolution of Radiation Therapy

1960’s
The First Clinac
Standard collimator

1970’s
Cerrobinh
Blocking Electron Blocking

1980’s
Multileaf Collimator
3D CT Treatment Planning

1990’s

2000’s
Dynamic MLC and IMRT

Modified from Varian
The future of radiation

• Biology
 – Use radiation to induce targets for other agents
 – Better radiation sensitizers and protectors
 – Combining radiation and targeted drugs

• Physics
 – Improved targeting (imaging)
 – Improved delivery methods (equipment)

• Clinical
 – Translate exciting laboratory findings into the clinic
 – Continue to develop clinician-scientists
Newer Modalities

Newer modalities

Radiopharmaceutical Therapy

NIST radioactivity standards for radiolabelled, tumor-specific monoclonal antibodies

\[^{90}Y \text{ Zevalin} \]
\[^{131}I \text{ Bexxar} \]
\[^{177}Lu \]
\[^{18}F \text{ Ho} \]
\[^{177}Lu \]
\[^{99m}Tc \]
\[^{181}Re \]
\[^{213}At \]
Why Protons Can be Superior to Photons

Why Protons Can be Superior to Photons

- **X-rays do not stop**
 - Excess radiation to healthy tissue results in potentially costly side effects and secondary tumors.
Proton Therapy Delivers Less Heart & Lung Dose

- X-Rays Deliver Excess Radiation
- Resulting in
 - Coronary Artery Stenosis
 - Secondary Cancer
 - Lung Fibrosis
Maryland Proton Treatment Center (MPTC) – A Regional Resource to Mid-Atlantic Healthcare Providers

- $200 million, 110,000 square feet, 5 treatment rooms, with unique patient throughput process enhancing patient volume capacity allowing treatment of up to ~1900 patients/year (150-190 patients/day)

VISION

To become a Proton Center of Excellence across all academic missions, accessible to and in PARTNERSHIP with major regional Health system/Oncology providers

UNIVERSITY of MARYLAND SCHOOL of MEDICINE
Take home messages

• Radiation is a tool used in cancer therapy
• Radiation causes DNA damage, which can lead to cell death
• The effects of radiation can be altered by modifying physical factors, physiologic factors, fractionation, drugs, and other variables
• Radiation can cause complications
• Radiation is INTERESTING!