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ABSTRACT

Women of African descent have the highest breast cancer mortality in
the United States and are more likely than women from other population
groups to develop an aggressive disease. It remains uncertain to what extent
breast cancer in Africa is reminiscent of breast cancer in African Amer-
ican or European American patients. Here, we performed whole-exome
sequencing of genomic DNA from 191 breast tumor and non-cancerous
adjacent tissue pairs obtained from 97 African American, 69 European
American, 2 Asian American, and 23 Kenyan patients. Our analysis of the
sequencing data revealed an elevated tumor mutational burden in both
Kenyan and African American patients, when compared with European
American patients. TP mutations were most prevalent, particularly in
African American patients, followed by PIKCAmutations, which showed
similar frequencies in European American, African American, and the
Kenyan patients. Mutations targeting TBX were confined to European
Americans and those targeting the FBXW tumor suppressor to African
American patients whereas mutations in the ARIDA gene that are known
to confer resistance to endocrine therapywere distinctively enriched among

Kenyan patients. A Kyoto Encyclopedia of Genes and Genomes path-
way analysis could link FBXW mutations to an increased mitochondrial
oxidative phosphorylation capacity in tumors carrying these mutations. Fi-
nally, Catalogue of Somatic Mutations in Cancer (COSMIC) mutational
signatures in tumors correlated with the occurrence of driver mutations,
immune cell profiles, and neighborhood deprivation with associations
ranging from being mostly modest to occasionally robust. To conclude, we
found mutational profiles that were different between these patient groups.
The differences concentrated among genes with low mutation frequencies
in breast cancer.

Significance: The study describes differences in tumor mutational profiles
between African American, European American, and Kenyan breast can-
cer patients. It also investigates how these profiles may relate to the tumor
immune environment and the neighborhood environment inwhich the pa-
tients had residence. Finally, it describes an overrepresentation of ARIDA
gene mutations in breast tumors of the Kenyan patients.

Introduction
Breast cancer incidence rates vary substantially between geographic areas and
population groups (1). The disease is the leading cause of cancer-related deaths
among women worldwide (2). Women of African descent develop lethal breast
cancer more frequently than women from other population groups in the
United States, which is at least partly explained by disparities in access to care
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(3). They also have the highest occurrence of triple-negative tumors (4, 5). Cur-
rently, we do not know how much ancestral and neighborhood environmental
factors contribute to aggressive breast cancer in these women but it has been
shown that neighborhood deprivation may have an influence on breast can-
cer risk and survival and biological aging in patients with breast cancer (6–
8). Investigations in West and Central Africa have provided corroboration that
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Breast Cancer Mutation Signatures Across Population Groups

women of African ancestry tend to develop early-onset, high-grade, and estro-
gen receptor (ER)-negative tumors more frequently than women of European
ancestry (9–12). However, these observationsmay not extend to East Africa (13,
14). Additional studies show that genetic predisposition could be an underly-
ing cause for the high prevalence of ER-negative tumors among women ofWest
African ancestry (15–18). We and others described additional traits of a distinct
tumor biology in African American (AA) patients with breast cancer (19–24).
More recently, these studies were enhanced with research into the mutational
profiles of breast tumors of AA and indigenous African women from Nigeria
(5, 11, 25, 26). Those investigations confirmed an elevated TP mutation fre-
quency in breast tumors of African descent women. In addition, they observed
a potential deficiency in homologous recombination and an increased chromo-
somal instability in them. Despite these findings, it remains uncertain to what
extent breast cancer in Sub-Saharan Africa beyond West Africa is reminiscent
of breast cancer in AA or European American (EA) patients.

We therefore pursued the hypothesis that the mutational burden of breast tu-
mors varies between population groups beyond current knowledge and may
associate with the tumor immune environment and living in a deprived neigh-
borhood. To test this hypothesis, we explored the mutational profile of breast
tumors from AA, EA, and Kenyan patients using whole-exome sequencing
(WES). We further investigated whether these profiles relate to the tumor im-
mune environment and neighborhood deprivation, namely the neighborhood
deprivation index (NDI), among the U.S.-based patients.

Materials and Methods
Tissue Collection
For the NCI-Maryland patient cohort, patients with breast cancer were re-
cruited between 1993 and 2003, as described previously (27, 28). Additional
patients were recruited at the University of Maryland (UMD) starting in 2012
as part of a study that will evaluate the impact of self-reported stress expo-
sure on tumor biology. Of the 168 UMD patients included in the study, 9 were
males. Patients with a family history of hereditary breast cancer were not part
of this cohort. Race was self-reported as AA or Black and EA or White, with
and without Hispanic ethnicity, or as Asian American. Patients completed a
questionnaire and provided biospecimens at time of surgery. Samples of fresh-
frozen tumor tissue and adjacent non-cancerous tissue were processed by a
pathologist immediately after surgery at the Department of Pathology, UMD.
Clinical and pathologic information was obtained from medical records and
pathology reports. All patients provided written informed consent prior to tis-
sue collection. Study protocols were approved by theUMD Institutional Review
Board for the participating institutions (UMD protocol #0298229). The re-
search was also reviewed and approved by the NIH Office of Human Subjects
Research Protections (OHSRP #2248). For the Kenya patient cohort, tumor and
adjacent non-cancerous tissue pairs were obtained from 23 women at the AIC
Kijabe Hospital, Kijabe, and Aga Khan University Hospital, Nairobi, from 2019
to 2021. Following surgical excision, the collected tissue samples were imme-
diately frozen in liquid nitrogen and stored at Aga Khan University Hospital.
The tissues were then shipped on dry ice by air to the NCI in Bethesda, United
States. Shipment took 3 days and the samples arrived embedded in dry ice.
Patient information was abstracted from the medical records and included pa-
tient’s age, tumor grade, tumor stage, and hormone receptor status, among
others. All patients provided informed written consent prior to tissue collec-
tion and the study protocol was approved by the Research Ethics Committees

(REC) at Aga Khan University Hospital (Ref: 2018/REC-80) and AIC Kijabe
Hospital (KH IERC-02718/0036/2019). Permit to conduct the research was also
sought from theNational Commission for Science, Technology, and Innovation
in Kenya. The research followed recognized ethical guidelines as defined by the
Declaration of Helsinki and the U.S. Common Rule.

WES
Genomic DNA was extracted from frozen breast tumors and adjacent non-
cancerous mammary tissues (191 tissue pairs). Extractions were done with
the Qiagen DNeasy blood & tissue kit, and the DNA quality was checked
by the NIH Genomics Core using the Agilent Genomic DNA Screen tape
assay. WES was performed by the service provider, Psomagen (https://www.
psomagen.com/), which is Clinical Laboratory Improvement Amendments–
certified and College of American Pathologists (CAP)-accredited, achieving a
sequence depth of 250x for tumor tissues and 150x for adjacent non-cancerous
tissues. A sequencing library was prepared by random fragmentation of the
DNA or cDNA sample, followed by 5′ and 3′ adapter ligation. For a subset
of samples, “tagmentation” that combines the fragmentation and ligation re-
action into a single step was used because it greatly increases the efficiency of
the library preparation process. Adapter-ligated fragments were PCR ampli-
fied and gel purified. For cluster generation, the library was loaded into a flow
cell where fragments were captured on a lawn of surface-bound oligos comple-
mentary to the library adapters. Each fragment was then amplified into distinct,
clonal clusters through bridge amplification. After completing the cluster gen-
eration, templates were ready for sequencing. Illumina sequencing by synthesis
technology (https://www.illumina.com/science/technology/next-generation-
sequencing/sequencing-technology.html) was utilized as a proprietary re-
versible terminator-based method that detects single bases as they are incorpo-
rated intoDNA template strands.Using a single-base extension and competitive
addition of nucleotides, single-base substitution (SBS) chemistry generates
highly accurate sequencing data and virtually eliminates sequence-context-
specific errors, even within repetitive sequence regions and homopolymers. An
Illumina sequencer (NovaSeq 6000 system, RRID:SCR_016387) was used to
generate raw images utilizing sequencing control software for system control
and base calling through an integrated primary analysis software called RTA
(Real Time Analysis, RRID:SCR_014332). The BCL (base calls) binary was con-
verted into FASTQ utilizing Illumina package bcl2fastq (RRID:SCR_015058).
The sequencing raw data and sample descriptors have been deposited in the Se-
quence Read Archive (SRA, RRID:SCR_004891) at https://www.ncbi.nlm.nih.
gov/sra. The accession number for these data is PRJNA913947.

Analysis of WES Data
FASTQ Read files were demultiplexed and trimmed for adapters and low-
quality bases using Trimmomatic (RRID:SCR_011848) and then aligned to the
human hg38 reference using the Burrows-Wheeler Aligner (BWA) software
package (RRID:SCR_010910). Mapped reads were then deduplicated using Pi-
card, followed by base quality score recalibration using the Genome Analysis
Toolkit best practice workflow. Somatic variant calling was performed using
MuTect2 in paired tumor-normal mode, and the panel of normal mode was
enabled to reduce false positive discovers. Variants in VCF format were fur-
ther annotated with functional and consequence prediction using Ensembl
Variant Effect Predictor (RRID:SCR_007931) involving common databases and
converted to Mutation Annotation Format (MAF) using the vcf2maf tool.
MAF files of individual samples were concatenated into a combined MAF file
and subject to a series of filtering steps, such as removing common variants
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with frequency larger than 0.001 in the ExAC, gnomAD, or 1000 Genomes
in any specific subpopulations; removing variants with < 20× depth in the
tumor sample; removing variants with < 5 reads of alternate allele, and an
alternate allele frequency of less than 10%. Further quality check of variants in-
volved manually displaying BAM files of variants in the Integrative Genomics
Viewer (IGV) and retrieving mutation data from Catalogue of Somatic Muta-
tions in Cancer (COSMIC; RRID:SCR_002260) and The Cancer Genome Atlas
(TCGA; RRID:SCR_003193) BRCA MC3 mutation databases. The cleaned
MAF file was then imported to MutSig2CV for driver mutated gene analysis.
TheRpackagemaftools (RRID:SCR_024519) or in-house scriptswere primarily
used for data analysis and visualization such as generating oncoplots, mutually
exclusive plots, lollipop plots etc.

Tumor Mutational Burden
Tumor mutational burden (TMB) was calculated by summing up all the non-
synonymous somatic mutations including missense, nonsense, nonstop, frame
shift deletions and insertions, in frame deletions and insertions, splice site and
translations start site mutations detected in each of the patients. TMB was
calculated per person with a capture region of 30 MB to obtain standardized
frequency estimates.

Mutational Signature Analysis, CIBERSORT, and NDI
Trinucleotide frequency patterns were extracted with maftools and the mu-
tational signature analysis was performed with COSMIC V2. We compared
individual trinucleotide patterns with single-base substitutions (SBS) muta-
tional signatures in the COSMIC database that have been reported for breast
cancer, namely SBS1–3, SBS5, SBS13, and SBS18. A mutational signature matrix
was obtained for each subject. This matrix was used for group comparisons
and related to either the tumor mutational spectrum, the tumor immune cell
signature as defined by CIBERSORT (RRID:SCR_016955, https://cibersortx.
stanford.edu/; ref. 29), or to neighborhood deprivation using either a correla-
tion analysis or theWilcoxon test to define the significance of group differences.
To obtain neighborhood deprivation data for the UMD-based patients, their
addresses were geocoded and linked to 1990 and 2000 census-tracts using the
National Neighborhood Change Database (30). We defined neighborhood de-
privation using an approach developed byMesser and colleagues (31). However,
in deviation from theNDI developed byMesser and colleagues, which included
20 census variables, we prioritized a set of six socioeconomic status–related in-
dicators, as described previously (32). The following variables are included in
the index: percent households in poverty, percent female headed households
with dependent children, percent households on public assistance, percent
households earning under $30,000/year, percent males and females unem-
ployed, and percent manager occupation. The index was standardized to have
a mean of 0 and SD of 1. Lower values indicate lower deprivation, while higher
values indicate higher deprivation. Finally, we performed a correlation analysis
using deprivation indices derived from the 1990, 2000, and 2010 census-tracts
and found they were highly correlated for our patient cohort (correlation coef-
ficient r > 0.9 for all comparisons), indicating that working with an additional
NDI derived from 2010 census-tract data would not be required for our study.

RNA-sequencing Data Analysis
RNA isolated from 68 frozen tumors was sent to the NCI Center for Cancer
Research Sequencing Facility for library preparation with the TruSeq PolyA kit
(Illumina). Sequencing was performed with the NovaSeq system using 150 bp
paired-end reads with a sequence depth of at least 30 million reads. Reads were

trimmed with the Trimmomatic software with 90% of them being uniquely
aligned to the human genome (hg38) using STAR (RRID:SCR_004463). RNA
mapping statistics were calculated using Picard with more than 90% of the
reads being mapped to the transcriptome. Read count per gene was cal-
culated by HTSeq (RRID:SCR_005514) under the annotation of Gencode
(RRID:SCR_014966) and normalized by size factor implemented in theDESeq2
package. Regularized-logarithm transformation (rlog) values of gene expres-
sion were used to perform further analyses. The RNA sequencing (RNA-seq)
data were deposited in the NCBI’s Gene Expression Omnibus (GEO) database
(RRID:SCR_005012) under accession number GSE225846.

Pathway Enrichment
By Mutation Status

Transcriptome data from TCGA human breast dataset were subjected to a gene
set enrichment analysis (GSEA, RRID:SCR_003199). GSEA was performed
as described previously (33). For pathway enrichment analysis, genes were
ranked by t-statistic and imported into the GSEA preranked module (https:
//software.broadinstitute.org/gsea/index.jsp;). Kyoto Encyclopedia of Genes
and Genomes (KEGG) gene sets (n = 186) were selected within MSigDB
(RRID:SCR_016863) as references for the pathway analysis.

By Population Group

Differential expression analysis was done using DESeq2 package in R
(RRID:SCR_015687). Population group-specific differentially expressed genes
(DEG) were filtered by a q value (FDR) < 0.05, the absolute value of fold
change > 2. We then performed pathway enrichment analysis with DEGs up-
regulated in AA breast tumors (compared with Kenyan and EA breast tumors)
through overrepresentation analysis using canonical pathways (MSigDb, Broad
Institute). Pathways with an FDR < 0.05 were used for subsequent biologic
interpretation.

Single-sample GSEA
Pathway activity scores derived from single-sample GSEA were calculated with
theGene SetVariationAnalysis (GSVA)Rpackage (ref. 34; RRID:SCR_021058),
it provides an estimate of pathway activity by transforming an input gene-
by-sample expression data matrix into a corresponding gene-set-by-sample
expression data matrix. KEGG pathways (RRID:SCR_012773) were used as the
reference gene sets. We chose the z-score method implemented within the
GSVA package to represent the activity in each sample. To calculate a pathway
activity score for oxidative phosphorylation, we selected the gene expression
profile for the genes annotated in KEGG “oxidative phosphorylation” and
summed this profile into a z-score as the pathway activity score for each tumor.

Ancestry Estimation
We estimated genetic ancestry using the WES data from the tumor/normal
tissue pairs. As a first step, germline variants were called using GATK’s Hap-
lotypeCaller in joint genotyping mode. Variants were then filtered for quality
with the following criteria: QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum
< −12.5, ReadPosRankSum < −8.0 for SNPs; QD < 2.0, FS > 200.0, Read-
PosRankSum < −20.0 for INDELs. For admixture analysis, only SNPs that
were biallelic were retained in the analysis. VCF files were converted into
PLINK format to calculate the distance matrix. 1-(identity-by-state) was used
as implemented in PLINK with “—distance” function. We then used GRAF-
pop (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/Software.cgi) which
is a fast distance-based method to infer ancestry based on references from
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multiple genotype datasets, including those of populations of Caucasian,
African, AA, Asian, and Mexican descent.

Statistical Analysis
All statistical tests were two sided, and an association was considered sta-
tistically significant at P < 0.05. For survival analysis, we used either the
Kaplan–Meier method, together with a log-rank test for significance test-
ing, or Cox regression modeling. For the NCI-Maryland patient cohort, we
had National Death Index–based survival follow up for 80 AA and 64 EA
patients, including the 9 males, through December 31, 2020. Statistical anal-
yses were performed using the R software, and the packages in Bioconductor
(RRID:SCR_006442, https://www.r-project.org) provided by the R Foundation
for Statistical Computing.

Data Availability
The data generated in this study are publicly available. The WES raw data for
the 191 tumor/adjacent normal tissue pairs and sample descriptors have been
deposited in the SRA at https://www.ncbi.nlm.nih.gov/sra. The accession num-
ber for these data is PRJNA913947. RNA-seq data for 68 human breast tumors
with paired WES data were deposited in the NCBI’s GEO database under ac-
cession number GSE225846. Additional information can be obtained from the
corresponding author, Stefan Ambs, upon request.

Results
Study Design
We generated somatic mutation profiles for breast tumors from 168 U.S.-based
patients, inclusive of 9male patients (Supplementary Table S1), and S23 Kenyan
patients (Supplementary Table S2) by interrogating WES data generated from
both tumor tissue and paired adjacent non-cancerous tissue. The Kenyan pa-
tients with breast cancer tended to be noticeably younger than the U.S. patients
with breast cancer [mean age: 48.8 (Kenyan) vs. 56.8 (AA) vs. 56.6 (EA) years].
The three patient cohorts had a similar body mass index (BMI) distribution
with most patients being in the overweight to obese categories, according to
World Health Organization criteria. Also, more patients presented with ER-
positive than ER-negative disease in each cohort (70% Kenyan; 59% AA, 72%
EA). All but one of the AA patients had West-African ancestry estimates ex-
ceeding 50%, whereas European ancestry predominated in all self-identified
European-American patients (Fig. 1A).

TMB
It has been previously reported that tumors from patients of African ancestry
may show a homologous repair deficiency and a generally increased somatic
mutation burden (11, 35). We examined the TMB in the three patient groups
and found—based on the somatic mutation frequency in the WES-defined
genome—that the TMB was highest in the Kenyan samples, lower in AA, and
lowest in the genome of breast tumors from EA patients (Fig. 1B). Next, we in-
vestigated the mutational profiles of the 191 breast tumors from the U.S. and
Kenyan patients, focusing on candidate driver mutations affecting protein-
coding genes at a frequency of ≥2% across all patients. As shown by the
oncoplot (Fig. 1C), TP mutations were the most common mutational event
(35%) with the highest frequency in AA (43%), followed by Kenyan patients
(35%), and the lowest frequency in EA patients (23%). PIKCAmutations were
the second most common alteration, consistent with the literature (5, 36), but
with similar frequencies in EA (20%), AA (21%), and Kenyan patients (22%) in

this cohort. Among other genes with lower mutation frequencies, some stood
out: TBX being mutated only in EA patients (9%, n = 6), ESRP1 and FBXW
only in AA [4% (n = 4) and 3% (n = 3), respectively], and ARIDA being most
frequently mutated in Kenyan patients (17%, n = 4). A correlation analysis re-
vealed that GATA and TBX mutations both inversely correlated with TP
mutations. Their occurrence and the occurrence of aTPmutationwere exclu-
sive from one another. In contrast, RB co-occurred withGBP and CDHwith
PIKCA mutations (Fig. 1D). In an analysis restricted to AA and EA patients,
several mutations showed associations with the patient group and the tumor
TPmutational status (Fig. 2A). Among them,ESRPmutations occurred only
in AA patients carrying a TP mutation and NBEA mutations occurred only
in EA patients with a TPmutation. Conversely, TBX andNCORmutations
occurred exclusively in EA patients who did not carry a TPmutation in their
tumors.

FBXW encodes an E3 ubiquitin ligase complexmember and tumor suppressor
(37). Like TP mutations, inactivating FBXW mutations occur throughout
the gene body in human breast tumors (Fig. 2B). Thesemutations are increased
in patients with cancer of African descent, showing a consistent association
with West African ancestry, as reported previously (38). We observed these
mutations in AA patients, but not in EA or Kenyan patients, in our cohort.
We confirmed their increased occurrence among AA patients in TCGA breast
cancer dataset (AA: 4.91%; EA: 0.98%; Fig. 2B). To further understand the im-
pact of FBXW mutations on breast cancer biology, we performed a GSEA
using RNA-seq data and KEGG pathway annotation for the contrast FBXW-
mutant versus wild-type tumors (Fig. 2C). For statistical power, we performed
this analysis within TCGA breast cancer dataset, harboring 17 tumors with
FBXW mutations, but not in our cohort because only 3 among the 191 pa-
tients were carriers of a FBXWmutation. Enriched pathways for this contrast
(mutant vs. wild-type FBXW) included the proteosome pathway as the top
ranked pathway. The observation agrees with the known function of FBXW7
as an ubiquitin-proteosome ligase involved in the degradation of putative onco-
genic proteins. Other enriched pathways included the process of mitochondrial
oxidative phosphorylation (Fig. 2C). We therefore explored whether the gene
set–based pathway z-score for KEGG-defined oxidative phosphorylation is
higher in FBXW-mutant when compared with wild-type tumors. This analy-
sis showed that FBXW-mutant patient tumors, especially those with a R465C
mutation (3 AA patients), had significantly increased pathway activity scores
when compared to FBXW wild-type breast tumors (Fig. 2D), indicating in-
creased mitochondrial activity in FBXW-mutant tumors. We did not find that
patients with breast cancer with FBXW-mutant tumors had a significantly dif-
ferent survival than patients with wild-type tumors, in part because only few
patients carried such a mutation. In contrast, somatic mutations in the FOXA
gene robustly associated with decreased patient survival in both our (Fig. 2E)
and TCGA-Broad GDAC breast cancer cohort (Supplementary Fig. S1). Muta-
tions in this gene also occurred at a relatively low frequency (2%–3%). Yet, their
occurrence robustly predicted breast cancer lethality.

Because we could not investigate gene expression profiles associated with in-
frequent mutations in our own dataset (e.g., for the FBXW and ARIDA
genes), we compared differential gene expression by population group and fo-
cused on pathway enrichment of DEGs.We report the DEGs in Supplementary
Table S3. As the key observation, pathways related to oxidative phosphoryla-
tion were significantly enriched in tumors from AA patients relative to tumors
from both Kenyan (electron transport chain: oxidative phosphorylation sys-
tem in mitochondria, FDR = 1.77E-7) and EA (oxidation by cytochrome P,
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FIGURE 1 Mutational profiles in breast tumors according to ancestral background of the patients. A, Circos admixture plot showing proportions of
West African, European, and Asian ancestry (outer circle) in self-identified AA (blue, inner circle, n = 97), EA (bisque, inner circle, n = 69), and Asian
American (bronze, inner circle, n = 2) patients with breast cancer in the NCI-Maryland study. Circos plot shows ancestry estimates derived from
tumor/normal tissue pairs. B, TMB in primary breast tumors of EA (n = 69), AA (n = 96), and Kenyan patients with breast cancer (n = 23). TMB as a
standardized measure (log10 scale) is different between EA, AA, and Kenyan patients (one-way ANOVA test, P < 0.05), and is highest in Kenyan
tumors. C, Oncoprint plot showing all somatic mutations in candidate driver genes that occurred at a frequency ≥2% in 191 primary breast tumors,
ordered by patient group and mutation frequency. Red boxes highlight mutations that occurred at an increased frequency in either EA (black bar
beneath plot, n = 69), AA (blue bar, n = 97), or Kenyan (red bar, n = 23) patients. The color scheme of the bars within the plot indicates the mutation
type and is explained beneath the plot to the left. The green and red color bars at the top of the plot summarize all somatic mutations detected within
one tumor, with green and red indicating the predominance of missense and nonsense mutations among all mutations. The gray bar to the left
indicates significance as −log10(P value) and was generated by the MutSigCV software, identifying excessively mutated genes. The more the bar
extends, the more likely it is that the mutated gene is cancer-related driver gene. D, Correlation matrix (P value-based) of mutual exclusivity among the
detected mutations and their target genes. As examples, GATA3 and TP53 mutations did not co-occur but PIK3CA and CDH1 mutations commonly did.
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Breast Cancer Mutation Signatures Across Population Groups

FIGURE 2 Pattern of somatic mutations among AA and EA patients. A, Genes enriched with somatic mutations showing robust frequency
differences or exclusivity in AA and EA patients with breast cancer. FOXA1 mutation frequency is shown as comparison. Only those patients who
carried at least one of these mutations are included in this graph. B, Mutational spectra of TP53 (top) and FBXW7 (bottom) tumor suppressor genes in
the AA and EA patients in TCGA dataset. C, GSEA KEGG gene set pathways with either positive or negative enrichment of DEGs comparing the
transcriptome of FBXW7 mutant versus FBXW7 wild-type breast tumors. FDR ≤ 10%, with adjustment for patients’ race. Source: TCGA breast cancer
dataset. D, Oxidative phosphorylation capacity in breast tumors with (n = 17) and without FBXW7 mutations (n = 1,046). Tumors carrying FBXW7
mutations have a significantly higher predicted capacity (Wilcoxon rank-sum test, P < 0.05). Oxidative phosphorylation capacity was derived from a
meta-gene score covering expression of genes in the KEGG oxidative phosphorylation pathway. Red circle: tumors carrying the R465C FBXW7
mutation. Oxidative phosphorylation pathway activity scores were obtained from single-sample GSEA. Source: TCGA breast cancer dataset.
E, Mutations in the FOXA1 gene have the most deleterious effect on survival of patients with breast cancer in the NCI-Maryland breast cancer cohort
(n = 93). Kaplan–Meier plot with a HR estimate using Cox regression modeling.

FDR= 2.1E-2) patients, indicating a distinct pathway activation in AA patients
when compared with the other patient groups. These findings are consistent
with a previous report showing a pan-cancer upregulation of mitochondrial
oxidative phosphorylation in tumors of AA patients, when compared with EA
patients (39).

After examining the frequency of candidate drivermutations, we askedwhether
breast tumors may show significant differences among the three patient groups
in harboring previously defined mutational signatures. We retrieved these sig-
natures from the COSMIC (40) and then compared their frequencies. We
focused on six mutational signatures that are prevalent in breast cancer, namely
SBS 1–3, 5, 13, and 18 (41, 42). We confirmed their presence (Fig. 3A) and
compared their frequency across the patient groups. One signature showed
variance. The SBS signature 3, SBS3, occurred at a higher frequency in AA but

not Kenyan patients when compared with EA patients (P = 0.03, AA vs. EA;
P = 0.86, Kenyan vs. EA; Fig. 3B). An elevated frequency of SBS3, which indi-
cates a defective homologous recombination–based DNA repair pathway, has
previously been described for breast tumors from AA and Nigerian patients
(11, 41). We did not find that the occurrence of SBS3 was significantly corre-
lated with a particular driver mutation in the same tumors (Fig. 3C). Somatic
or germlinemutations inBRCA/ that can cause a SBS3 signature did not occur
in our patient cohort. In contrast, SBS5 showed an inverse correlation with the
occurrence of TP mutations (correlation coefficient: −0.36) whereas SBS13
and SBS18 positively correlated with the occurrence of either TP (correlation
coefficient: 0.38) or GATA mutations (correlation coefficient: 0.36; Fig. 3C).
SBS18 is an oxy-radical damage signature that was reported to be increased in
Chinese patients with breast cancer (43).
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FIGURE 3 Mutational signatures in breast tumors and their association with somatic mutations in driver genes and immune cell signatures.
A, Prevalence of mutational signatures from the COSMIC catalog (SBS1–3, 5, 13, 18) in breast tumors from AA, Kenyan, and EA patients. Others include
2 AA and 6 EA patients with self-reported Hispanic ethnicity. B, Elevated presence of the SBS3 mutational signature in breast tumors of AA patients.
Relative abundance scores for SBS3 in each tumor were compared between the three patient group patients (one-way ANOVA, P < 0.05). C, Heat map
showing a correlation coefficient matrix for the relationship between the six COSMIC-based mutational signatures and somatic mutations in candidate
driver genes in 191 breast tumors. D, Heat map showing a correlation coefficient matrix for the relationship between the mutational signatures and gene
expression–based immune cell profiles of the tumors. Transcriptome data and the CIBERSORT algorithm were used to define the immune cell profiles.

2250 Cancer Res Commun; 3(11) November 2023 https://doi.org/10.1158/2767-9764.CRC-23-0165 | CANCER RESEARCH COMMUNICATIONS

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/3/11/2244/3380735/crc-23-0165.pdf by N

ational Institutes of H
ealth user on 13 N

ovem
ber 2023



Breast Cancer Mutation Signatures Across Population Groups

Tumor Mutation Signatures and Immune Profile
Next, we assessed the association of these mutational signatures with gene
expression–based immune cell profiles using the CIBERSORT deconvolution
algorithm (29). We restricted this analysis to the 68 breast tumors with both
WES and transcriptome data (27 AA, 18 EA, 23 Kenyan patients). T follicular
helper cells and uncommitted macrophages (M0) showed variance among the
patient groups and were increased in AA but not Kenyan patients, when com-
pared with EA patients (Supplementary Fig. S2). Yet, the differences were not
significant in a multicomparison-adjusted analysis across all CIBERSORT con-
trasts. We further noticed positive associations between the number of tumor-
infiltrating CD8-positive T cells and the SBS2 and SBS13 signatures (correlation
coefficient 0.33 and 0.32, respectively; P< 0.05 each; Fig. 3D). Yet overall few of
these relationships existed with correlation coefficients ≥0.3 (Fig. 3D). SBS2
and SBS13 commonly co-occur in tumors and are attributed to an upregu-
lated AID/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like
(APOBEC) cytidine deaminase activity in tumors (https://cancer.sanger.ac.uk/
signatures/sbs/). We performed an additional sensitivity analysis with male
and Asian American patients being removed from the dataset (Supplemen-
tary Fig. S3). We found that our results remained largely unchanged, with SBS3
occurring at the highest frequency in AA patients and the number of tumor-
infiltrating CD8-positive T cells being associated with the SBS2 and SBS13
signatures (correlation coefficient 0.31 and 0.35, respectively; P < 0.05 each).

Tumor Mutation Signatures and Neighborhood
Deprivation
Neighborhood factors may influence tumor biology. We inquired whether the
neighborhood environment may associate with the occurrence of these muta-
tional signatures in our U.S. cohort. To do so, we generated a NDI for all U.S.
patients, as described previously (32). Comparable NDI data did not exist for
the Kenyan patients. Because our U.S. patients were recruited between 1993 and
2004, we applied NDIs calculated with both 1990 and 2000 census data. Neigh-
borhood deprivation significantly associated with patient survival independent
of other known survival predictors including a patient’s income and education,
self-reported race, or disease stage, with an estimated 30% proportion as an
independent mediator in predicting survival outcomes in the NCI-Maryland
cohort (Supplementary Fig. S4A–S4C). It also associated with patient and dis-
ease characteristics (Fig. 4A) but did not correlate significantly with any of the
mutational signatures (Fig. 4B). In a sensitivity analysis with male and Asian
American patients being removed from the dataset, the associations of NDI
with patient and disease characteristics (self-reported race, household income,
and TP and TBXmutational status) remained (Supplementary Fig. S5).

Discussion
There is evidence that West African ancestry may influence breast cancer bi-
ology (11, 18, 19, 44). However, there is still a paucity of studies describing
molecular features of breast tumors in East Africa (45, 46). Here, we studied
mutational profiles in three ancestrally distinct patient groups, namely AA, EA,
and Kenyan patients, and asked if these profiles show patient group differences
or may associate with immune cell profiles or patients’ neighborhood environ-
ment.We found that the TMBwas highest in the Kenyan samples, lower in AA,
and lowest in breast tumors from EA patients. We further noted that mutations
targeting TBX were confined to EA patients and those targeting the FBXW
tumor suppressor to AA patients whereas mutations in the ARIDA gene were
distinctively enriched among Kenyan patients.

TBXmutations are putative driver mutations in breast cancer and usually lead
to loss of function (47, 48). TBX mutations were not among the recurrent
mutations in a large Nigerian breast cancer cohort with 129 patients (11), in
agreement with our finding that they are more common in EA patients. The
FBXW tumor suppressor gene is one of very few genes whose mutational fre-
quency has previously been linked to ancestry (38). Our data show that these
mutations are uncommonbut largely restricted toAApatientwith breast cancer
where they promote oxidative phosphorylation and increased energy produc-
tion, as our data suggest. This observation is consistent with the findings from
a previous pan-cancer study (49). ARIDA mutations are present at high fre-
quency in advanced endocrine therapy-resistant ER-positive breast tumors, as
shown previously (50). Hence, their occurrence has clinical significance. Their
presence will influence the decision about the therapy that should be given to
patients with ER-positive breast cancer because an ARIDAmutation may ren-
der these patients insensitive to first-line endocrine therapy. Mechanistically,
ARIDAmutations cause a loss of luminal identity and transdifferentiation to a
basal-like phenotype that does not depend on ER activity (50). Kenyan patients
with breast cancer present most commonly with ER-positive (60%–70%) breast
cancer (13). Further investigations of ER-positive patients in both Kenya and
surrounding countries should assess if ARIDA mutations indeed affect them
at an increased frequency.

Triple-negative breast cancer impacts women of African ancestry more so than
other women (51). The disease is a target of immune therapy (52, 53). Although
it has been shown that the response to immune checkpoint inhibitors corre-
lates with a high mutational burden in colon and non–small cell lung cancer,
this relationship has not been established for breast cancer (54). Nevertheless,
there is preliminary evidence that the combination of a PARP inhibitor with the
immune checkpoint inhibitor, Pembrolizumab, may work best in patients with
advanced triple-negative breast cancer with BRCA mutations (55). We inves-
tigated whether CIBERSORT-predicted immune cell profiles show variance in
association with patient group and tumor mutation signatures. Overall, we did
not find robust relationships. However, we observed a suggestive positive re-
lationship between CD8 T-cell numbers and mutational signatures defined by
AID/APOBEC cytidine deaminase activity–induced mutations, namely SBS2
and SBS13. This observation is consistent with previous findings analyzing
Nigerian breast tumors. Here, the APOBEC mutational signature positively
correlatedwith increasedT-cell infiltration (11).We also found suggestive differ-
ences in the number of resting macrophages between the patient groups, with
tumors fromAA tumors harboring the highest numbers of these macrophages.
We and others have previously reported that macrophage numbers might
be increased in tumors of this patient group (19, 56), while others reported
differences in CD8 T cells (57).

In the past, we and others reported that the TP mutation frequency in
breast tumors associates with patients’ socioeconomic status (58, 59), provid-
ing a rationale for our research approach to study the potential impact of the
neighborhood environment on breast cancer biology. Our investigations were
restricted to U.S. patients in our study as comparable data did not exist for
the Kenyan patients. We found that neighborhood deprivation associates with
disease characteristics and is a predictor of patient survival in a multivariable
model. However, we did not find that it associates with mutational signatures
of known molecular origin that are prevalent in human breast tumors. From
this analysis, it does not appear that the neighborhood environment is a driver
of the mutational landscape in these tumors; however, our study might have
been underpowered to detect associations between NDI and these signatures.

AACRJournals.org Cancer Res Commun; 3(11) November 2023 2251

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/3/11/2244/3380735/crc-23-0165.pdf by N

ational Institutes of H
ealth user on 13 N

ovem
ber 2023

https://cancer.sanger.ac.uk/signatures/sbs/


Tang et al.

FIGURE 4 Neighborhood deprivation and its association with mutational signatures. A, Relationship of the NDI with race/ethnicity, household
income, BMI, age, disease stage, tumor ER status, and tumor TP53 and TBX3 mutational status, in the NCI-Maryland breast cancer cohort. NDI for the
analysis was obtained for each patient in the study using 2000 census data and correlated with patient or tumor characteristics. Significant
associations with race, household income, and TP53 and TBX3 mutational status (P < 0.05 with t test or one-way ANOVA). B, Correlation matrix for
the relationship of patients’ 1990 and 2000 NDIs with six COSMIC-based mutational signatures in their tumors. NDI shows a moderate inverse
correlation with the SBS2 signature.

In an unrelated study, we showed that neighborhood deprivation associates
with circulating immune-oncology markers and metastasis in patients with
prostate cancer (32). Thus, it is possible that the NDI has a greater impact on
the metastatic process by altering the immune environment in the circulation
than it influences the immune biology of the primary tumor site.

Our study cohort included 9 male patients. There is limited information on the
somatic mutational profile in breast tumors from male patients because these
tumors are rare. Male breast cancers share many molecular features with fe-
male breast cancers although differences in mutation frequencies may exist,
withmale breast cancers having a lowermutational burden (60). As a limitation
of our study, we did not include patients with breast cancer from West Africa
as an additional comparison group. However, there have been reports on the

mutational profile of breast tumors in Nigerian patients with breast cancer (11,
41), whereas data for East African patients have been missing. This is the rea-
son why we focused on Kenyan patients with breast cancer. Findings from Pitt
and colleagues (11) indicate that the mutational profile in tumors of Nigerian
patients is similar to the profile in tumors of AA patients. In contrast, our study
reports that ARID1Amutationsmay occur at an increased frequency in Kenyan
patients.

In conclusion, our data show that mutational signatures may show distinct dif-
ferences between patient groups of diverse race/ethnic background.Within the
NCI-Maryland breast cancer cohort, we did not obtain evidence of a robust
relationship between neighborhood deprivation and the occurrence of mu-
tational signatures that commonly occur in breast tumors. This observation
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contrasts with previous findings from another study that revealed a relation-
ship of neighborhood deprivation with circulating immune-oncology markers
and lethal prostate cancer. Using a hypothesis-generating approach, analyzing
23 breast tumors from Kenyan patients, we discovered an overrepresentation
of ARIDA gene mutations. These mutations are known to confer resistance to
endocrine therapy. This intriguing finding should be followed up with a larger
study.
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