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ABSTRACT

African American (AA) women have an excessive risk of developing
triple-negative breast cancer (TNBC).We employedAssay for Transposase-
Accessible Chromatin using sequencing to characterize differences in
chromatin accessibility between nine commonly used TNBC cell lines de-
rived frompatients of European andAfrican ancestry. Principal component
and chromosome mapping analyses of accessibility peaks with the most
variance revealed separation of chromatin profiles by patient group. Motif
enrichment and footprinting analyses of disparate open chromatin regions
revealed differences in transcription factor activity, identifying 79 with
ancestry-associated binding patterns (FDR< 0.01). AATNBC cell lines ex-
hibited increased accessibility for 62 transcription factors associated with
epithelial-to-mesenchymal transition, cancer stemness/chemotherapeutic
resistance, proliferation, and aberrant p53 regulation, as well as KAISO,
which has been previously linked to aggressive tumor characteristics in
AA patients with cancer. Differential Assay for Transposase-Accessible
Chromatin signal analysis identified 1,596 genes located within promoters
of differentially open chromatin regions in AA-derived TNBC, identify-

ing DNA methyltransferase 1 as the top upregulated gene associated with
African ancestry. Pathway analyses with these genes revealed enrichment in
several pathways, including hypoxia. Culturing cells under hypoxia showed
ancestry-specific stress responses that led to the identification of a core
set of AA-associated transcription factors, which included members of the
Kruppel-like factor and Sp subfamilies, as well as KAISO, and identified
ZDHHC, a gene previously implicated in immunity and STING activation,
as the top upregulatedAA-specific gene under hypoxia. Together, these data
reveal a differential chromatin landscape in TNBC associated with donor
ancestry. The open chromatin structure of AA TNBC may contribute to a
more lethal disease.

Significance: We identify an ancestry-associated open chromatin land-
scape and related transcription factors that may contribute to aggressive
TNBC in AA women. Furthermore, this study advocates for the inclusion
of diversely sourced cell lines in experimental in vitro studies to advance
health equity at all levels of scientific research.

Introduction
Human cancer cell lines are valuable and widely used in vitro model systems
essential to performing cancer research at its most reductionist level. Under
the proper growth conditions, cancer cell lines can retain many of the genetic
properties of the parental tumor from which they were derived (1). Represent-
ing a seemingly inexhaustible source of biologic material, these cost-effective
and manipulatable systems remain essential to mechanistic studies, drug dis-
covery efforts, and preclinical research. Because of the foundational role they
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play, researchers now recognize that issues occurring at this most basic level
can result in ripple effects throughout the subsequent scientific pipeline, un-
dercutting data reproducibility, accuracy, and quality. A recent example by
Hooker and colleagues tested genetic ancestry of 15 common cell lines, un-
covering several misclassification errors in ancestry that may contribute to
erroneous conclusions in the health disparities field (2). Ultimately, inaccura-
cies and missteps at this earliest level could lead to spurious drug candidates
that progress to preclinical development only to fail, squandering resources
and time.
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Despite the centrality of cancer cell lines to biomedical research and develop-
ment, these in vitro systems have been historically sourced from the tumors of
predominantly White/European American (EA) patients (3). Indeed, the lack
of racial and ethnic diversity and representation in cell lines origin could im-
pede discovery efforts that benefit all populations, impacting health equity even
at this most basic stage. Yet, little has been done to directly test whether donor
ancestry does in fact impact the molecular properties of cancer cell lines in
culture at baseline or after experimental perturbation.

In this study, we sought to characterize differences in chromatin accessibility
in triple-negative breast cancer (TNBC) cell lines derived from women of two
different ancestral backgrounds—EA andAfrican American (AA).We chose to
focus our investigation on TNBC due to the well-documented racial disparities
in tumor biology and breast cancer survival (4). AA women are at increased
risk of developing and dying from TNBC, an aggressive breast cancer sub-
type, compared with EAwomen in the United States. Further investigation into
biological factors that contribute to these disparities is needed to fully under-
stand this multifactorial problem, including more focus on the epigenetics of
racial/population diversity and its influence on breast cancer biology and out-
comes. Some studies seeking to investigate ancestry as a biological contributor
to breast cancer disparities have suggested that the extent of African ancestry
itself correlates with the likelihood of being diagnosed with more aggressive
breast cancer subtypes than women from other population groups (5). Yet,
manyU.S.-based studies rely on self-reported race, a social construct, as a pseu-
doproxy for genetic ancestry, which is intrinsically biological (6). Recent work
byMartini and colleagues has begun to disentangle the two, finding 50%of gene
expression associated with ancestry was distinct from that of self-reported race
(7).Here, we adopt a reductionist approach that employswidely usedTNBCcell
lines to explore the impact of differential ancestry-associated chromatin profiles
on transcription factor (TF) activity, downstream gene expression, and their
implications for tumor biology. Knowledge gained here could hold promise to
advance our understanding of biological contributors to cancer disparities and
support the importance of diversity and inclusion within in vitro systems.

Materials and Methods
Cell Lines and Sample Preparation Methods
Cell Lines and Culture

All human breast cancer lines were obtained from ATCC. MDA-MB-157
(ATCC catalog no.: HTB-24; RRID: CVCL_0618), MDA-MB-231 (ATCC cat-
alog no.: HTB-26; RRID: CVCL_0062), MDA-MB-436 (ATCC catalog no.:
HTB-130; RRID: CVCL_0623), and HCC1806 (ATCC catalog no.: CRL-2335;
RRID: CVCL_1258) cells were grown in DMEM (Gibco Laboratory) with
2 mmol/L glutamine (Millipore Sigma) and 10% FBS (HyClone Laboratories).
MDA-MB-468 (ATCC catalog no.: HTB-132; RRID: CVCL_0419), Hs578T
(ATCC catalog no.: HTB-126; RRID: CVCL_0332), HCC70 (ATCC catalog no.:
CRL-2315; RRID: CVCL_1270), BT549 (ATCC catalog no.: HTB-122; RRID:
CVCL_1092), andHCC2157 (ATCC catalog no.: CRL-2340; RRID: CVCL_1261)
cells were grown in RPMI media (Gibco Laboratory) supplemented with 10%
FBS.HCC2157 cells grow in suspensionwhereas all other cell lines are adherent.
We obtained authentication of these cell lines through ATCC services using a
short tandem repeat analysis; as cell lines were obtained directly from ATCC,
Mycoplasma testing was not performed. The biological sex of all cell lines was
female. To perform the Assay for Transposase-Accessible Chromatin using se-
quencing (ATAC-seq) analysis, following regular cell culture procedure, one

million cells (MDA-MB-157, MDA-MB-231, MDA-MB-436, HCC1806, MDA-
MB-468, Hs578T, HCC70, BT549, and HCC2157) were suspended in 1.5 mL
freezing medium (basal media + 20% FBS + 10% DMSO). The above cry-
opreserved cells were sent to the Sequencing Facility at Frederick National
Laboratory for Cancer Research, Frederick, MD, where sample processing and
sequencing was done.

Cell Culture Under Hypoxia

For normoxic (21% O2) conditions, cells (MDA-MB-157, MDA-MB-231,
HCC1806, MDA-MB-436, MDA-MB-468, Hs578T, HCC70, BT549) were cul-
tured at 37°C in a 5% CO2 humidified environment as an adherent monolayer.
Hypoxia experimentswere performedwith the above eight adherent cell lines in
a hypoxia chamber (BioSpherix) at 1%O2 at 37°C in a 5%CO2-humidified envi-
ronment. Briefly, breast cancer cells were plated in T75 flask (1× 106 cells/flask).
Media was changed after 24 hours, and cells were exposed to normoxia (21%
O2) and hypoxia (1% O2) for 48 hours. Experiments were conducted in dupli-
cates. After 48 hours, the cells were harvested from the flasks by 0.25% trypsin
(Gibco Laboratory) and 1 million cells were suspended in 1.5 mL of freezing
medium (basal media + 20% FBS + 10% DMSO). The above cryopreserved
cells were sent to the Sequencing Facility at Frederick National Laboratory
for Cancer Research, Frederick, MD, where sample processing and sequencing
were done.

Nuclei Isolation and ATAC-seq

Cell revival, cell lysis, transposition, andDNA extraction were performed using
a published method by Corces and colleagues, 2017 (8) with some modifica-
tions for cryopreserved cell processing (9). Briefly, frozen cell pellets of 50,000
cells were resuspended in 1 mL of cold ATAC-seq resuspension buffer (RSB;
10 mmol/L Tris-HCl pH 7.4, 10 mmol/L NaCl, and 3 mmol/L MgCl2 in water).
Cells were centrifuged at 500 rcf for 5 minutes in a prechilled (4°C) fixed-angle
centrifuge. After centrifugation, 900 μL of supernatant was aspirated, which left
100 μL of supernatant. This remaining 100 μL of supernatant was carefully as-
pirated by pipetting with a P200 pipette tip to avoid the cell pellet. Cell pellets
were then resuspended in 50 μL of ATAC-seq RSB containing 0.1% NP40, 0.1%
Tween-20, and 0.01% digitonin by pipetting up and down three times. This cell
lysis reaction was incubated on ice for 3 minutes. After lysis, 1 mL of ATAC-seq
RSB containing 0.1% Tween-20 (without NP40 or digitonin) was added, and
the tubes were inverted to mix. Nuclei were then centrifuged for 10 minutes at
500 rcf in a prechilled (4°C) fixed-angle centrifuge. Supernatant was removed
with two pipetting steps, as described before, and nuclei were resuspended in
50 μL of transposition mix by pipetting up and down six times. Transposi-
tion reactions were incubated at 37°C for 30 minutes in a thermomixer with
shaking at 1,000 rpm. Reactions were cleaned up with Zymo DNA Clean and
Concentrator 5 columns. The remainder of the ATAC-seq library preparation
was performed as described previously (9). All libraries were amplified with a
target concentration of 20 μL at 4 nmol/L, which is equivalent to 80 femtomoles
of product. A total of 32 ATAC-seq samples were pooled and sequenced on
NextSeq using OMNI ATAC-seq protocol adapted from Corces and colleagues
(8) and paired-end sequencing. All samples have >95% Q30 bases, which is
defined as the percentage of bases called with an inferred accuracy of 99.9%
or above and a measure of base calling quality. All the samples had yields be-
tween 48 and 417 million pass filter reads. Samples were trimmed for adapters
using Cutadapt v.4.4 (ref. 10; RRID: SCR_011841) before the alignment. The
trimmed reads were alignedwith the human genome assembly – hg38 reference
using Bowtie2 v.2.5.1 (11) alignment (RRID: SCR_016368). Overall alignment
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percentage for the samples was 97% and unique alignment was above 53%.
There were 0.96% to 8.08% unmapped reads. Library complexity wasmeasured
by uniquely aligned reads using Picard’s MarkDuplicate utility. All the samples
had library complexity with percent nonduplicated reads ranging from 38% to
69%. The peaks were called using Genrich and total number of peaks ranged
between 54,835 and 83,046. The number of reads falling in peaks (FRiP score)
generally ranged between 30% and 70%. The ATAC-seq data for the human
breast cancer cell lines were deposited in the NCBI Gene Expression Omnibus
(GEO) database under accession number GSE223182.

RNA Extraction for Gene Expression Studies

RNA was isolated using TRIzol and subsequently DNase treated. Integrity of
isolated RNA was evaluated using RNA ScreenTapeon the Agilent Tapestation
(Agilent Technologies). Sequencing was performed on an Illumina NextSeq
2000 machine at the Sequencing Facility, Leidos Biomedical Research, Inc.,
Frederick National Laboratory for Cancer Research using standard protocols.
Briefly, 16 mRNA sequencing samples were pooled and sequenced on NextSeq
2000 P2 using Illumina Stranded mRNA Ligation Kit and paired-end sequenc-
ing. The samples had 56 to 69 million pass filter reads with more than 95% of
bases above the quality score of Q30. The RNA sequencing (RNA-seq) data for
the human breast cancer cell lines were deposited in the NCBI’s GEO database
under accession number GSE223181.

Chromatin Accessibility Analysis
ATAC-seq Data Processing

After verifying that the pair-end reads are of acceptable sequencing quality,
sequencing adapters and primers were trimmed away using Cutadapt (10).
Trimmed reads that align to known blacklisted regions using Bowtie2 (11) were
excluded from downstream analysis. Bowtie2 was again applied to align the
remaining reads to the host genome allowing “multimappers”. These latter se-
quences were then mapped as recommended by ENCODE guidelines (12).
Reads which remained unmapped or failed quality checks or were identified as
a PCR duplicate are removed. Primary alignments of the remaining reads were
further filtered to remove lowMAPQ alignment. Reads were then deduplicated
and parsed to Genrich (13) for ATAC-seq peak calling. FastQC v.1.0.0 (ref. 14;
RRID: SCR_014583) for base calling statistics, PRESEQ (15) for library com-
plexity, and fragment length distribution, transcription start site enrichment,
fraction of reads in peaks, nucleosome-free-region tomononucleosome-region
read ratio and other widely recommended (16) ATAC-seq–specific quality con-
trol metrics were applied to verify acceptable quality of all sample replicates.
Peaks called by Genrich (13) for each cell line were converted to fixed-width
peaksets and peaks reproducible across replicates are labeled as consensus peak
calls. Consensus peaks from all cell lines were renormalized andmerged to gen-
erate a preliminary list of regions of interest (ROI; ref. 17). Using the prefiltered
alignment files from above, featureCounts v.2.0.6 (18) was used to create a count
matrix counting the Tn5-nicking sites (19) in these ROIs. ChIPSeeker v.1.36.0
(ref. 20; RRID: SCR_021322)was used to annotate the ROIs in relation to known
gene body loci.

Principal Component Analysis

The dimensionality of the Tn5-nicking site counts matrix was reduced by cal-
culating the principal components and plotting the first two components which
explain a significant proportion of the overall variation.

Identification of Differentially Accessible Regions

Loading the count matrix into DESeq2 v.1.45.5 (ref. 21; RRID:SCR_015687) a
differential analysis was then performed to determine the ROIs which show
significant differences in measured ATAC-seq signal between EA and AA sam-
ples. The results were filtered for differential regionswith FDR≤ 0.05 and signal
fold change ≥ 2. This allowed us to filter the overall open chromatin regions of
interest into those with significant differential ATAC signals between the two
groups or differentially accessible regions (DAR).

TF Binding Motif Enrichment

We used ChromVAR v.1.22.1 (22) to estimate bias-corrected deviations of TF
binding motif enrichment. It enables accurate clustering of ATAC-seq profiles
and characterization of motifs associated with variation in chromatin acces-
sibility. The motifmatchr package was used to match motifs from the JASPAR
core database (23) to peaks fromdifferentially open chromatin regions and vari-
ability (SD of the z-scores computed across all samples for a set of peaks) and
adjusted P values were calculated, and the top 50most variable TFs were plotted
on a heat map.

Digital Footprinting Analysis

Using the motifs from the HOCOMOCO (24) database (RRID: SCR_005409),
we ran TOBIAS v.0.14.0 (25) in the identified DARs to predict TF occupancy
or perform digital footprinting analysis. TOBIAS results shed light on gain and
loss of individual TF footprints in the DARs. TFs with a differential binding
score above |0.225| and a FDR < 0.01 were considered significant.

Pathway Enrichment Analyses

For pathway enrichment analysis, ancestry-related genes upregulated in ei-
ther EA or AA TNBC, which were identified through differential analysis of
ATAC signal by DESeq2 (|log2FC| > 2, FDR < 0.01), were then imported
into the Enrichr tool (ref. 26; RRID: SCR_001575) to perform an overrepre-
sentation analysis of both cancer hallmark pathways (MSigDb, Broad Institute;
RRID: SCR_016863) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (RRID: SCR_012773). Pathways with an FDR < 0.2 were used for
subsequent biologic interpretation.

STRING Protein–protein Interaction Network Construction of
Ancestry-specific Transcriptional Factors

Hypoxia-induced and ancestry-specific differentially bound TFs identified by
TOBIAS were analyzed using the STRING database (RRID: SCR_005223) to
identify groups of TF proteins that have known and/or predicted relation-
ships (27). Using STRING, we performed pathway enrichment analysis, which
identified overrepresentation of Reactome (RRID: SCR_003485) pathways of
functional subsystems that are observed more frequently than expected us-
ing hypergeometric testing against a statistical background of the genome (27).
Network nodes signify proteins and colored edges denote evidence of protein–
protein interactions (PPI) of various types. Networks were clustered via the
Markov cluster algorithm with default inflation parameters.

RNA-seq Data Processing and Analysis
The Illumina FASTQ files were assessed for quality control using FastQC
v.0.11.6. Reads of the samples were trimmed for adapters and low-quality bases
using Cutadapt before alignment with the reference genome (hg38) and the an-
notated transcripts using STARv.2.7.5b. The gene expression quantificationwas
performed using RSEM v1.3.2. The average mapping rate of all samples was
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97% and unique alignment was above 88%. The mapping statistics were calcu-
lated using Picard software. Percent coding bases were between 51% and 61%.
Percent untranslated region bases were 32%–43%, and mRNA bases were be-
tween 89% and 94% for all the samples. Library complexity was measured in
terms of unique fragments in the mapped reads using Picard’s MarkDuplicate
utility. The samples had 58%–71% nonduplicate reads. Differential expression
analysis was done using DESeq2 package in R. Differential expression genes
(DEG) were filtered by a q value (FDR) < 0.05, the absolute value of fold
change > 2. We then performed gene set enrichment analysis (GSEA) using
the gene transcription regulation reference (Gene Transcription Regulation
Database: GTRD) from the Molecular Signatures Database: http://www.gsea-
msigdb.org/gsea/msigdb/human/collections.jsp).

Ancestry Estimation for Cell Lines Using RNA-seq Data
Germline variants were called using GATK’s HaplotypeCaller v.4.2.6.1 from
available RNA-seq data for eight cell lines cultured under normoxic conditions,
MDA-MB-468, MDA-MB-157, HCC1806, HCC70, MDA-MB-231, MDA-MB-
436, Hs578T, and BT549. For admixture analysis, only SNPs that were biallelic
were retained in the analysis. We used GRAF-pop v.1.0 (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/Software.cgi), which is a fast distance–based
method to infer ancestry based on references from multiple genotype datasets,
including those of populations of European, African, and Asian descent. The
method assigned a predominant African ancestry to MDA-MB-468, MDA-
MB-157, HCC1806, and HCC70 cells and a predominant European ancestry
to the MDA-MB-231, MDA-MB-436, Hs578T, and BT549 cells, consistent with
donor ethnicities reported by ATCC for these cell lines. Ancestry estimates
of our cell lines aligned closely with publicly available data from the Esti-
mated Cell Line Ancestry (ECLA) database from the Moffitt Cancer Center
(http://ecla.moffitt.org).

The Cancer Genome Atlas Validation
To validate ancestry-specific upstream transcriptional regulators identified by
ATAC-seq in cell line analyses, RNA-seq data from The Cancer Genome At-
las (TCGA; RRID: SCR_003193) breast cancer data were downloaded from the
Broad Institute’s GDAC (https://gdac.broadinstitute.org/runs/stddata__2016_
01_28/data/BRCA/20160128/) covering 112 TNBC patient tumors (n = 78 EA,
n = 34 AA participants) to infer differences in TF activity by genetic ancestry,
which was assigned using previously reported quantified genetic ancestry es-
timates (28). Of note, quantified genetic ancestry estimates were concordant
with self-reported race in these subjects (Supplementary Fig. S1). Signifi-
cant ancestry-specific genes upregulated in either EA or AA TNBC identified
through differential analysis of TCGA BRCA TNBC RNA-seq (by DESeq2,
|FC|> 1.5, FDR< 0.05)were input into the Ingenuity PathwaysAnalysis (RRID:
SCR_008653) to perform an upstream regulator analysis.

Statistical Analysis
Two experimental replicates of each cell line were submitted for ATAC- and
RNA-seq and averaged for analyses. If not specified, R platform was used to
compute statistics and generate plots. log2 fold change, P values, and FDR were
calculated and used to assess significance. Significant differences for all quanti-
tative datawere consideredwhen |log2FC|> 2 and FDR< 0.01 unless otherwise
noted.

Data Availability
The RNA-seq data for the human breast cancer cell lines were deposited in the
NCBI GEO database under accession number GSE223181. The ATAC-seq data

for the humanbreast cancer cell lineswere deposited in theNCBIGEOdatabase
under accession number GSE223182.

GSE223183: This SuperSeries is composed of the following SubSeries:
GSE223181 Integrated chromatin accessibility and gene expression landscape of

human TNBC cell lines reveals variation by patient donor ancestry [RNA-
seq]

GSE223182 Integrated chromatin accessibility and gene expression landscape
of human TNBC cell lines reveals variation by patient donor ancestry [Bulk
ATAC-seq]

The following secure token has been created to allow review of record
GSE223183 while it remains in private status: urgfuuiiprstfkj.

Results
Genome-wide Landscape of Chromatin Accessibility
in EA- and AA-derived TNBC Cell Lines
The assay for transposase-accessible chromatin using sequencing, known as
ATAC-seq, is currently the prevailing method used to assess chromatin acces-
sibility across the genome (29). Genomic DNA is exposed to a highly active
transposase, Tn5, which fragments DNA and inserts into open chromatin re-
gions, adding sequencing primers. Upon sequencing, researchers can use the
position of Tn5 to characterize open and closed chromatin sites, investigate TF
binding, and infer downstream gene expression and regulation. In this study,
we employed ATAC-seq to characterize differences in chromatin accessibility
between EA (n = 4) and AA (n = 5) donors of nine commonly used TNBC
cell lines (Table 1). Ancestry estimation (http://ecla.moffitt.org) indicates an av-
erage European ancestry of 93% for the four EA TNBC cell lines and 79.5%
West African ancestry for the five AA TNBC cell lines (Table 1). Our ances-
try estimates using the RNA-seq data from these cell lines were consistent with
these reported estimates. ATAC libraries were generated using two replicates
of each cell line. Chromatin was fragmented into the expected nucleosome-
free regions and mononucleosome, dinucleosome, and trinucleosome patterns
(Fig. 1A), with the fractions of reads in peaks (FRiP) falling between 30% and
70%, indicating high-quality data. The total number of peaks merged across
nine cell lines was 212333, with intronic, intergenic, and promoter regions rep-
resenting themost accessible genomic elements to Tn5 transposase (Fig. 1B and
C). Our principal component analysis of the top 50,000 peaks with the most
variance revealed separation of chromatin profiles by genetic ancestry (Fig. 1D),
with EA TNBC showing a closer relationship to one another than AA TNBC.
Genome-wide analysis of differentially accessible chromatin sites (FDR < 0.01
and |log2FC| > 2) in EA compared with AA TNBC cells confirmed distinctive
patterning of open chromatin across a number of chromosomes (Fig. 1E). To-
gether, these data suggest genome-wide differences in the chromatin landscape
by donor ancestry in these commonly used TNBC cell lines.

EA- and AA-derived TNBC Cell Lines Exhibit Differential
TF Accessibility by Donor Ancestry
TF dysregulation can induce aberrant gene expression associated with cancer;
indeed, TF activity is altered in a number of cancers and has long been con-
sidered a lofty yet challenging candidate for drug targeting (30). Given their
critical role in tumor initiation and progression, we focused our investigation
on understanding differences in TF abundance and activity in TNBC lines
by ancestry. Using Tn5-nicking sites as counts in called peaks, we performed
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TABLE 1 TNBC cell lines derived from women of EA and AA descent

Cell line Donor ancestry Africana Europeana Asiana ER PR HER2 TNBC subtypeb Morphologyb Tumor sourceb
Parental tumor
histologyb Mutationsb

BT549 European American 0.20% 89.00% 10.90% Neg Neg Neg Mesenchymal Mesenchymal-like Primary Ductal carcinoma PTEN
RB1
TP53

MDA-MB-231 European American 2.00% 88.20% 9.80% Neg Neg Neg Mesenchymal
stem-like

Mesenchymal-like Metastasis, pleural effusion Adenocarcinoma BRAF
CDKN2A
KRAS
NF2
TP53

MDA-MB-436 European American 1.40% 96.40% 2.20% Neg Neg Neg Mesenchymal
stem-like

Mesenchymal-like Metastasis, pleural effusion Adenocarcinoma BRCA1
RB1

HS578t European American 0.50% 97.70% 1.70% Neg Neg Neg Mesenchymal Mesenchymal-like Primary Carcinoma CDKN2A
HRAS
PIK3R1
TP53

MDA-MB-157 African American 77.90% 17.40% 4.70% Neg Neg Neg Mesenchymal
stem-like

Mesenchymal-like Metastasis, pleural effusion Medulallary carcinoma NF1
TP53

MDA-MB-468 African American 80.30% 13.50% 6.20% Neg Neg Neg Basal-like 1 Basal-like Metastasis, pleural effusion Adenocarcinoma PTEN
RB1
SMAD4
TP53

HCC1806 African American 80.70% 15.50% 3.80% Neg Neg Neg Immunomodulatory Basal-like Primary Primary acantyolytic
squamous cell
carcinoma

CDKN2A
KDM6A
STK11
TP53

HCC2157 African American 87.80% 7.80% 4.40% Neg Neg Neg Basal-like 1 Basal-like Primary Primary ductal
carcinoma

KDM6A
TP53

HCC70 African American 70.90% 23.70% 5.50% Neg Neg Neg Basal-like 2 Basal-like Primary Primary ductal
carcinoma

PTEN
TP53

aAncestry estimates derived from the ECLA database from the Moffitt Cancer Center. Our ancestry estimates used our RNA-seq data from these cell lines and were concordant with ECLA.
bCell line annotations obtained from the ATCC.
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FIGURE 1 Genome-wide landscape of chromatin accessibility in TNBC cell lines derived from EA and AA women. A, Fragment length distribution
plot for TNBC cell lines. Peak < 150 bp indicates a nucleosome-free peak; peak between 150 and 300 bp indicates a mononucleosome peak. FRiP
scores greater than 0.3 indicate high quality of the data. Technical replicates (n = 2) were averaged for each cell line. B, Summary of peak distribution
across all samples. C, Number of peaks by TNBC cell line. All samples had high peak numbers (∼75,000) covering promoters and intergenic regions.
D, Principal component analysis showing separation of the chromosome accessibility landscape by ancestry for the nine TNBC cell lines. Technical
replicates (n = 2) were averaged for each line. E, Chromosome map showing the distribution of DARs between EA and AA TNBC cells (FC > 2,
FDR < 0.01).
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FIGURE 2 Patterns of differential TF binding in open chromatin regions among TNBC cell lines derived from EA and AA women. A, Overabundance
of known TF motifs within differentially open regions. Heat map of top 50 most variable TFs by cell line donor ancestry based on differential ATAC
signal analysis. B, Volcano plot of predicted differences in TF binding scores by patient group using digital footprinting analysis with TOBIAS. Open
chromatin regions defined by TF binding sites are significantly different between cell lines from AA and EA patients. A total of 79 TFs were
differentially bound in AA versus EA TNBC lines (points in red indicate TFs with differential binding score > |0.225| and FDR<0.01). A differential
binding score of greater than 0.225 indicates increased binding in EA. A differential binding score of less than −0.225 indicates increased binding in
AA. C, Top-ranked 10 TFs with differential binding capacities in the two donor groups identified through digital footprinting analysis.

differential ATAC signal analysis using DESeq2. We examined the overabun-
dance of known TF motifs in these differential regions of interest using
nonredundant JASPAR motifs and created a heat map of the top 50 most vari-
able TFs (Fig. 2A; Supplementary Table S1). In EA-derived TNBC lines, a strong
overabundance of motifs associated with members of the AP-1 TF families was
observed, including members of the FOS (FOSL1, FOSL2, FOS), JUN (JUND,
JUN, JUNB), and ATF (BATF) andMAF (MAF) subfamilies; AP-1 proteins are
bZip domain-containing TFs that homodimerize and heterodimerize with each
other and are implicated in cancer cell growth andproliferation across a number
of cancer types, including breast (31). One AA-derived cell line, MDA-MB-157,
showed a similar pattern, which contrasted with the other four AA cell lines.
Differentially accessible chromatin regions (DAR) in the AA-derived TNBC
lines showed an overabundance in motifs associated with the Grainyhead fam-
ily of TFs, such as GRHL1 and TFCP2, which are considered pro-oncogenic
in breast cancer and involved in pro-metastatic processes like epithelial-to-
mesenchymal transition and angiogenesis (32). AA-associated DARs were also
overabundant in motifs of several TFs from the AP-2 family, including AP2A,
2B, and 2C, and multiple isoforms, which have a well-documented role in
breast carcinogenesis (33); also enriched were motifs in forkhead box (FOX)

TFs, including members of the FOXO4 (implicated in cancer cell invasion and
replicative immortality), FOXD2 (implicated in chemoresistance), FOXI1 (as-
sociated with poor prognosis in breast cancer), and FOXL1 (modulator of Wnt
signaling) subfamilies (34, 35).

Next, we performed a digital footprinting analysis of differentially open chro-
matin regions using TOBIAS. We uncovered significant differences in TF
binding by ancestry (79 TFs with a differential binding score > 0.225 or
< −0.225 and FDR< 0.01; Fig. 2B and C; Supplementary Table S2). EA andAA
TNBC cell lines exhibited increased binding capacities for 17 and 62 total TFs,
respectively, with several common themes shared with the motif enrichment
analysis. In EA TNBC, the top 10 differentially bound TFs were all members of
subfamilies within the AP-1 TF family. In AA TNBC, the predicted top four
differentially bound TFs with an increased binding capacity were all associ-
atedwith epithelial-to-mesenchymal transition (ZEB1, SNAI1, SNAI2,GRHL2).
Others were associated with cancer stemness and chemotherapeutic resistance
(TFAP2C, NRF1), cancer cell proliferation (E2F, E2F1, E2F2), and the TP53
pathway (P53, P63, P73). Interestingly, our data also showed increased bind-
ing of KAISO in AA TNBC lines (Fig. 2B), whose aberrant expression has been
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FIGURE 3 Differential ATAC signal analysis of human TNBC cell lines identified ancestry-associated genes within differentially accessible chromatin
regions across all genomic elements. Genes are displayed on a volcano plot, where the y-axis shows statistical significance (plotted as −log10 FDR)
and the x-axis shows the differences between each ancestry group (plotted as log2 fold change). The horizontal dashed lines depict our specified
significance cut-off points, with genes that showed an FDR < 0.05 and a |log2FC| > 1 shown in red. Negative log2 fold change values show genes
differentially open or up in AA donor cell lines, while positive log2 fold change values show genes differentially open or up in EA donor cell lines.

previously linked to a distinct biology and poor outcomes in AA patients with
breast and prostate cancer (36–38). We wanted to confirm the correlation be-
tween ancestry-specific TF activity identified by ATAC-seq with downstream
enrichment of their known transcriptional targets. Using RNA-seq data from
our cell lines, we performed GSEA with gene sets from the GTRD to infer key
transcriptional regulators based on expression of their known transcriptional
targets (Supplementary Table S3). While not all met statistical significance,
many TFs that had shown significant enrichment with chromosome accessi-
bility mapping also annotated with GSEA. In EA, two TFs overlapped with the
two approaches, RORA (Pnom = 0.23) and BCL6B (Pnom = 0.26). In AA, 11 TFs
overlapped, including SNAI1 (Pnom = 0.19), NR1H4 (Pnom < 0.0001), MSX2
(Pnom = 0.03), andKLF14 (Pnom = 0.08). Taken together, these data suggest that
TF activities show significant differences by donor ancestry, withAfrican ances-
try displaying an ancestry-specific TF activity profile associated with increased
aggressiveness in breast cancer.

We next sought to extend these findings from human TNBC cell lines to TNBC
patient tumors to investigate if ancestry-specific TF activity showed similar pat-
terning by patient ancestry group. ATAC-seq data were not available within
TCGA for validation of TF binding and motif enrichment analyses; however,
we leveraged RNA-seq data from triple-negative breast tumor tissues in EA
(n = 78) and AA (n = 34) patients within TCGA to perform an upstream
regulator analysis to infer critical transcriptional regulators based on ancestry-
related differences in downstream gene expression (Supplementary Table S4).
We identified numerous donor ancestry-associated upstream regulators in the

tumors that overlapped with the ancestry-related TF activities found in our
TNBC cell line analyses (Table 2). In TNBC tumors from EA patients, these
TFs totaled 22 and included FOS [activation score (AS) = 1.89, P = 0.00033],
JUN (AS = 1.90, P = 0.00003), JUNB (AS = 0.56, P = 0.022), BATF (AS =
2.00, P = 0.0035), and FOSL1 (AS = 0.52, P = 0.0026). In TNBC tumors from
AA patients, validated TFs totaled 25 and notably included TP53 (AS = 0.61,
P = 0.0093), TP63 (AS = 0.61, P = 0.0048), TCF3 (AS = 2.53, P < 0.00001)
and TCF4 (AS= 1.70, P= 0.0001), TFAP2A (AS= 1.3, P= 0.004), and various
members of the FOX TF family. These patient data were concordant with some
of the top TFs identified in our cell line data.

TNBC Cells Derived from AAWomen Show Downstream
Transcriptional Changes Associated More Aggressive
Tumor Biology
Our findings showing that EA and AA women possess differential patterns of
TF binding in TNBC cells led us to wonder how these differences may impact
downstream gene expression. To this end, we performed a differential ATAC
signal analysis usingDESeq2 to identify geneswithin differentially openATAC-
seq peaks, defined as differentially expressed genes or DEGs; |log2FC| > 2,
FDR < 0.01; Fig. 3; Supplementary Table S5). Across all genomic elements,
we identified 13,945 differential peaks in EA TNBC and 14,927 in AA TNBC,
mapped to 6,029 and 7,595 unique gene annotations, respectively. Specifically
in promoters, we identified 791 genes that were differentially open in EA and
1,596 that were differentially open in AA. Within promoter regions, the top
DEGupregulated in EAwas LRRC (|log2FC|= 5.6, FDR= 6.2× 10−13), a long
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TABLE 2 Upstream regulator analysis of TCGA breast cancer data
identifies patient group-associated TFs that have a common association
with ATAC-seq signals in the TNBC human cell lines

Upstream Regulator Analysis using TCGA RNA-seq Dataa

TNBC Tumors from European American Patients (n = 78)

Enriched upstream regulator Activation z-score P

ESR1 3.34 0.00000
ETV3 2.24 0.01900
BATF 2.00 0.00350
ETV5 2.00 0.01140
JUN 1.90 0.00003
FOS 1.89 0.00033
MNT 1.89 0.00070
SREBF2 1.83 0.00320
GATA3 1.62 0.01420
SREBF1 1.38 0.00660
ESR2 0.90 0.00155
STAT3 0.87 0.00001
CLOCK 0.71 0.03700
PRDM1 0.68 0.00000
EGR2 0.67 0.00350
JUNB 0.56 0.02200
CUX1 0.56 0.03600
NR4A2 0.54 0.00097
FOSL1 0.52 0.00260
BACH2 0.39 0.01100
EGR1 0.38 0.01260
SRF 0.11 0.01550

TNBC Tumors from African American Patients (n = 34)

Enriched upstream regulator Activation z-score P

TCF3 2.53 0.00000
MYF6 2.22 0.00686
IRF9 2.19 0.02030
REST 2.19 0.00003
POU2F2 2.12 0.00020
POU4F1 2.00 0.02490
BHLHE40 1.94 0.00214
TBX21 1.83 0.00003
PAX5 1.77 0.00001
TCF4 1.70 0.00001
KLF6 1.56 0.00220
TFAP2A 1.30 0.00400
NR3C2 1.29 0.00487
IRF8 0.89 0.00523
EOMES 0.89 0.00990
TP63 0.68 0.00930
TP53 0.61 0.00484
HOXA10 0.58 0.00290
SMAD3 0.56 0.00000
MSC 0.39 0.00000
SP3 0.37 0.00170
FOXA1 0.22 0.00003
RARA 0.11 0.03070
FOXP3 0.05 0.00112
CTCF 0.05 0.00014

aTFs displayed that specifically overlapped with those identified by cell line
ATAC analyses.

noncoding RNA suspected to function as a tumor suppressor, followed by
LRIG, which interestingly also has an anti-invasive role in basal-like breast
cancer cells through encouragingmesenchymal-to-epithelial transition (ref. 39;
Table 3). Conversely, the top DEG upregulated in AA was DNMT (|log2FC| =
6.73, FDR = 4.9 × 10−12), a DNA methyltransferase (Table 3); this epigenetic
regulator was also inferred to be enriched in our upstream regulator analy-
sis using GSEA GTRD with our RNA-seq data (ES = 0.30, Pnom = 0.097;
Supplementary Table S3). Interestingly, expression of DNMT1 is associated
with poor survival in breast cancer, is overexpressed specifically within TNBC,
induces cancer cell invasion and survival through hypermethylation of key
tumor suppressors, and is considered an epigenetic target for therapeutic block-
ing (40). Many of the top-ranking genes identified in differentially accessible
chromatin regions by ATAC-seq were also significantly overexpressed at the
transcript level in these cell lines (Supplementary Fig. S2; Supplementary Ta-
ble S6), including top EA-specific DEG, LRRC, and the top AA-specific DEG,
DNMT.

To identify key signaling pathways associated with donor ancestry, we
next performed an overrepresentation analysis using the top 500 significant
DEGs (|log2FC| > 2, FDR < 0.01) upregulated in promoter regions. In EA
TNBC, enriched Hallmark-annotated cancer pathways (FDR < 0.2) included
epithelial-to-mesenchymal transition (Padjusted = 2.3 × 10−4), downregulation
of UV response (Padjusted = 0.04), complement (Padjusted = 0.1), and hedgehog
signaling (Padjusted = 0.16; Table 3). Interestingly, the key DEGs contribut-
ing to the enrichment of the epithelial-to-mesenchymal transition pathway
(e.g., fibrillin-, SLIT, WIPF, etc.) are negative regulators of this process
(41–43), suggesting that this may in fact functionally translate to suppression
of mesenchymal differentiation in EA TNBC. No significant enrichment of
KEGG-annotated pathways was found. In AA TNBC, upregulated Hallmark-
annotated cancer pathways (FDR < 0.2) included estrogen response (early,
Padjusted = 4.1 × 10−4; late, P = 4.4 × 10−4), apical junction (Padjusted =
2.9 × 10−3), and hypoxia (Padjusted = 0.1), among others (Table 3). Nine KEGG
pathways were significantly upregulated in AA TNBC, including angiogenic,
metabolic, and inflammatory pathways, for example, inflammatory mediator
regulation of transient receptor potential (TRP) channels. Contributing to the
enrichment of the TRP pathwaywas the upregulation of several members of the
TRP calcium ion channel superfamily, including TRPM, TRPM, TRPV, and
TRPS, in AATNBC. TRP channels and their regulation of Ca2+ signaling have
been implicated in cancer proliferation,metastasis, and drug resistance, and are
just emerging as a novel candidate for therapeutic intervention in breast cancer
(44). Together, these data suggest an enrichment of genes and pathways specific
to donor ancestry, with AA-derived TNBC lines showing changes consistent
with a more generally aggressive tumor biology.

Hypoxia Exacerbates Underlying Differences in TF
Activity Between EA- and AA-derived TNBC Cell Lines
Hypoxia, or regions that lack sufficient oxygen, occurs in most solid tumors,
including breast cancer. Of all breast cancer subtypes, hypoxia occurs most
frequently in TNBC, and has been associated with therapy resistance and
poor prognosis (45, 46). Furthermore, a recent study by Bassiouni and col-
leagues found hypoxic tumor content differed by patient race in TNBC (47).
Given the distinct molecular characteristics, we have uncovered thus far in
AA TNBC, including an enrichment for the hypoxia pathway at baseline, we
wondered how this might impact their biological response to hypoxia. To this
end, we cultured EA- and AA-derived TNBC cell lines under normoxic (21%
O2) and hypoxic (1% O2) conditions and performed ATAC-seq. Genome-wide
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TABLE 3 Top genes and pathways enriched in TNBC cell lines in association with patient ancestry

Top Genes from Differentially Open Chromatin Regions in EA TNBC

Number of peaks: 24,699 Number of promoter peaks: 1,939

Gene Gene name Gene region log2 Fold change FDR

LRRC2-AS1 LRRC2 antisense RNA 1 Promoter 5.602271229 6.20E-13
LRIG1 Leucine-rich repeats and immunoglobulin-like domains 1 Promoter 5.595517478 4.00E-12
WHAMMP1 WAS protein homolog associated with actin, golgi

membranes, and microtubules pseudogene 1
Promoter 5.385911582 4.00E-04

DAAM2 Disheveled-associated activator of morphogenesis 2 Promoter 5.371681742 1.20E-06
FIG4 FIG4 phosphoinositide 5-phosphatase Promoter 5.161573716 4.80E-09
ZNF175 Zinc finger protein 175 Promoter 5.114722072 5.60E-09
ANKS1B Ankyrin repeat and sterile alpha motif domain containing 1B Promoter 5.032588901 1.50E-07
SSH1 Slingshot protein phosphatase 1 Promoter 4.917551442 9.00E-12
TNFSF10 TNF superfamily member 10 Promoter 4.900819915 3.00E-04
SSB Small RNA-binding exonuclease protection factor La Promoter 4.878610195 1.00E-04

Top Enriched Pathways from Differentially Open Chromatin Regions in EA TNBC (FDR < 0.2)

Top enriched cancer hallmark pathways Adjusted P value Pathway enrichment score

Epithelial–mesenchymal transition 2.30E-04 39.58
Hedgehog signaling 0.16 17.08
UV response Dn 0.044 16.81
Complement 0.1 10.9

Top Genes from Differentially Open Chromatin Regions in AA TNBC

Number of peaks: 26,481 Number of promoter peaks: 3,676

Gene Gene name Gene region log2 Fold change FDR

DNMT1 DNA methyltransferase 1 Promoter −6.7310574 4.93E-12
STX19 Syntaxin 19 Promoter −6.616313 1.60E-09
RBBP8 RB binding protein 8, endonuclease Promoter −6.5506956 1.00E-12
BDH1 3-hydroxybutyrate dehydrogenase 1 Promoter −6.3479744 1.40E-15
LINC01143 Long intergenic non-protein coding RNA 1143 Promoter −6.2482495 5.32E-09
LINC00536 Long intergenic non-protein coding RNA 536 Promoter −5.9931338 5.33E-13
CLDN8 Claudin 8 Promoter −5.9201921 5.88E-14
PDE9A Phosphodiesterase 9A Promoter −5.8916671 1.04E-08
PTH2R Parathyroid hormone 2 receptor Promoter −5.7741998 3.01E-10
TBCD Tubulin folding cofactor D Promoter −5.677859901 1.55E-11

Top Enriched Pathways from Differentially Open Chromatin Regions in AA TNBC (FDR < 0.2)

Top enriched cancer hallmark pathways Adjusted P value Pathway enrichment score

Estrogen response early 4.10E-04 28.99
Apical junction 2.90E-03 20.06
Estrogen response late 4.40E-04 17.56
Hypoxia 1.10E-01 8.11
Myogenesis 1.60E-01 6.77

Top enriched KEGG pathways Adjusted P value Pathway enrichment score

Vascular smooth muscle contraction 5.16E-04 41.32
alpha-Linolenic acid metabolism 1.20E-02 61.42
Fatty acid biosynthesis 2.20E-02 59.88
Linoleic acid metabolism 2.20E-02 42.36
GnRH signaling pathway 6.10E-02 17.92
Fc gamma R-mediated phagocytosis 8.20E-02 15.83
Platelet activation 8.20E-02 13.98
Estrogen signaling pathway 1.10E-01 12.34
Inflammatory mediator regulation of TRP

channels
1.50E-01 12.19
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analysis of differentially accessible chromatin sites (FDR< 0.01 and |log2FC|>
2) in EA compared with AA TNBC under hypoxia revealed distinctive pattern-
ing of open chromatin across a number of chromosomes (Fig. 4A). To look at
TF binding, we performed a digital footprinting analysis of differentially open
chromatin regions using TOBIAS.While themost differentially expressed tran-
scription factors (DETF) showed changes in the same general direction when
comparing EA with AA under both normoxia and hypoxia, the magnitude of
these changes showed variations; most hovered near zero, but a core set of TFs
within each donor group deviated more dramatically (Fig. 4B; Supplementary
Table S7). In EA TNBC, this core set of EA-specific hypoxia response TFs once
again includedmembers of the AP-1 TF family, which have been found to be in-
duced in hypoxic environments (48), as well as NFE2 and NF2L1/2 which have
been linked to Wnt signaling in breast cancer (49). In AA TNBC, this core set
of AA-specific hypoxia response TFs includes six members of the large multi-
gene family of Sp/Kruppel-like factor (KLF) TFs, all of which have been linked
to altered cancer cell metabolism; further, three members of the Sp subfamily
(SP1, SP2, SP3) have been shown to regulate hypoxia through direct interaction
with HIF1a (50). Also, among this core set of AA-specific hypoxia response TFs
was KAISO, which has been shown to regulate HIF1a specifically during hy-
poxia (51) and whose aberrant activity is heavily associated with tumors from
AA patients.

To better understand how differentially bound TFs involved in the ancestry-
driven hypoxia response might act in concert to dictate downstream gene
expression, we constructed a protein-protein interaction (PPI) network using
the STRING database (27), allowing for better discernment of functional
relationships between TFs (Fig. 4C and D). Within the core set of EA-specific
hypoxia-induced TFs, a significantly enriched PPI network was observed
(P < 1.0 × 10−16), with a high degree of TF coexpression and shared functions
(average local clustering coefficient = 0.81) among the small network (nodes,
n = 10, edges, n = 27); as expected, DETFs from AP-1 family, namely the JUN
and FOS TF subfamilies, showed highly robust interactions, likely reflecting
the homodimeric and heterodimeric functional relationships between these
proteins. We performed a pathway enrichment analysis using REACTOME
based on the TF network analysis to identify shared biologic function of sig-
nificant TF clusters (Fig. 4C); the top FDR-significant pathways included the
pathways involved in proliferation (MAPK targets; FCERI-mediated MAPK
activation), anti-inflammatory cytokine signaling (IL4 and IL13 signaling;
signaling by ILs), and activation of the AP-1 family of TFs. Within the core
set of AA-specific hypoxia-induced TFs, a significantly enriched PPI network
was also observed (P < 1.0 × 10−16), which was more expansive and extensive
than that of the EA PPI network (nodes, n = 55, edges, n = 148). TP53 is one
of the most prominent nodes featured in this network, with high degree of
connectivity and central to several other key nodes, such as SP-1, EGR-1, and
KLF-4. In pathway enrichment analyses using REACTOME, 33 pathways were
identified with an FDR < 0.01, 15 of which are shown in Fig. 4D. Top pathway
themes in the AA TF network were many pathways related to TP53, cell cycle
(E2F; cyclin D and G1; PTEN; transcription of E2F targets; TP53 regulation
transcription of cell-cycle genes; etc.), and cell stress/apoptosis (activation of
PUMA; activation of NOXA; oncogene-induced senescence).

We next performed a differential ATAC signal analysis using DESeq2 to better
understand downstream genes that may be impacted by the increased activity
of each of the ancestry-specific hypoxia response TFs (Table 4; Supplementary
Table S8). Across all genomic elements, we identified 5,643 differential peaks
in EA TNBC and 7,037 in AA TNBC, mapped to 3,595 and 4,618 unique gene

annotations, respectively. Specifically in promoters, we identified 491 genes that
were differentially accessible in EA and 1,001 that were differentially accessible
in AA, with an increased access to them for TFs. Within promoter regions, the
top DEGs upregulated in EA wasMAGI, a junctional scaffold protein that acts
as a tumor suppressor in the context breast cancer through inhibition of the p38
stress pathway (52), and SMG, which has been implicated in DNA repair and
telomere maintenance (53). The top DEGs upregulated in AAwas endoplasmic
reticulum-associated protein ZDHHC, implicated in innate immune response
and a positive regulator of the STING pathway (54), and ADAP, which has
been shown to promote cancer progression by inducing cell migration and in-
vasion (55). All together, these data suggest that TNBC cells may have distinct,
donor ancestry-specific stress responses to hypoxia.

Discussion
Here, we adopted a reductionist approach to better understand the contribution
of patient ancestry to TNBC at the chromosomal level. In this study, we un-
covered an ancestry-specific chromatin landscape across nine commonly used
human TNBC cell lines. Through chromatin profiling by ATAC-seq, we found
that TNBC cell lines displayed separation of chromatin profiles by donor an-
cestry. ATAC-seq is uniquely positioned to explore TF activity and binding;
therefore, we were especially interested in characterizing ancestry-specific TFs,
as these proteins are master regulators of chromatin and downstream gene ex-
pression and their dysregulation is frequently implicated in cancer initiation
and progression.

EA-derived TNBC lines showed an overabundance in motifs associated with
members of AP-1 TF families that are linked to cancer cell growth and pro-
liferation. AA-derived TNBC lines displayed strong overabundance in motifs
associated with members of the Grainyhead, Forkhead Box, and AP-2 TF,
which have been extensively linked to a pro-oncogenic and pro-metastatic tu-
mor biology, notably including cancer cell invasion, epithelial-to-mesenchymal
transition, angiogenesis, and poor prognosis in breast cancer. Digital footprint-
ing analysis identified differentially bound TFs, which suggests activity at the
time of the assay and may be of particular functional relevance, further bol-
stered these findings. Indeed, EA and AA TNBC cell lines exhibited increased
binding of 17 and 62 total TFs, respectively. Particularly interesting were the
differentially bound TFs specific to African ancestry, of which a majority had
robust links to epithelial-to-mesenchymal transition, as well asmany associated
with cancer stemness, chemotherapeutic resistance, cancer cell proliferation,
and the p53 pathway. Notably, we found increased binding of KAISO in AA
TNBC lines. Several studies have shown KAISO to be highly and preferentially
expressed in TNBC tissues of women of African descent (56, 57). In both breast
and prostate cancer, KAISO promotes cell migration and invasion through si-
lencing ofmethylated genes that promote epithelial-to-mesenchymal transition
(38). Indeed, its aberrant expression has been previously linked to a distinct
biology and poor outcomes in individuals of African descent (57). Our study
further corroborates these findings at the chromatin level, showing ancestry-
specific binding of this critical and multifunctional transcriptional regulator.
We performed validation of these findings in human patients, identifying a
number of upstream transcriptional regulators enriched in TNBC tumors from
TCGA that overlapped with those found in our cell lines, which included 22
shared between patient tumors and cell lines of predominantly European an-
cestry, and 25 shared between patient tumors and cell lines of predominantly
African ancestry; these TFs may be of particular interest for future follow-up
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FIGURE 4 Hypoxia exacerbates donor ancestry-related differences in TF activity in cultured TNBC cell lines. A, Chromosome map showing the
distribution of DARs between EA and AA TNBC cells when subjected to hypoxic conditions (FC > 2, FDR < 0.01). B, Differential digital footprinting in
EA- and AA-derived TNBC lines was performed using TOBIAS to identify open chromatin regions and their TF binding sites. Shown are the top AA- or
EA-associated TFs whose predicted binding activity increased by a defined magnitude of >0.05 under hypoxia. PPI network of TFs with differential
binding capacities (DBS > 22.5, FDR < 0.01) that are up in EA (C) and AA (D) under hypoxia using the STRING database. Top 15 significantly enriched
pathways (FDR < 0.01, Reactome-based) based on a TF network analysis.
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TABLE 4 Top DEGs upregulated under hypoxia in EA and AA TNBC cell lines

Top 10 DEGs from DARs in Promoter Regions Upregulated in EA under Hypoxia

Symbol Gene log2 Fold change FDR

MAGI1 Membrane-associated guanylate kinase, WW and PDZ domain containing 1 4.68 3.02E-12
SMG6 SMG6 nonsense-mediated mRNA decay factor 4.58 6.57E-07
DAAM2 Disheveled-associated activator of morphogenesis 2 4.51 9.73E-05
DPP9 Dipeptidyl peptidase 9 4.49 7.52E-07
CDCA2 Cell division cycle associated 2 4.41 2.17E-22
SSH1 Slingshot protein phosphatase 1 4.12 4.10E-07
C3orf18 Chromosome 3 open reading frame 18 4.08 3.05E-11
ITPR2 Inositol 1,4,5-trisphosphate receptor type 2 4 5.43E-07
FRMD6 FERM domain containing 6 3.99 6.47E-06
KRTAP2–3 Keratin-associated protein 2–3 3.98 5.28E-07

Top 10 DEGs from DARs in Promoter Regions Upregulated in AA under Hypoxia

Symbol Gene log2 Fold change FDR

ZDHHC1 Zinc finger DHHC-type containing 1 −6.08 1.11E-14
ADAP1 ArfGAP with dual PH domains 1 −6.04 1.70E-16
CRYBG2 Crystallin beta-gamma domain containing 2 −5.73 1.97E-12
CRISPLD2 Cysteine rich secretory protein LCCL domain containing 2 −5.73 1.67E-12
MB Myoglobin −5.72 6.47E-13
CBLC Cbl proto-oncogene C −5.7 8.52E-09
SPECC1L-ADORA2A SPECC1L-ADORA2A readthrough (NMD candidate) −5.67 2.36E-13
C1orf116 Chromosome 1 open reading frame 116 −5.61 2.41E-15
KIFC3 Kinesin family member C3 −5.59 1.12E-10
CNKSR1 Connector enhancer of kinase suppressor of Ras 1 −5.58 1.13E-13

studies. Overall, we observed an African ancestry-related TF profile in TNBC
that is largely associated with a more aggressive and pro-metastatic tumor
biology.

Upon examining how these ancestry-specific TF profiles could impact gene
expression, particularly of those that fell within promoter regions, we identi-
fied a number of interesting candidate genes upregulated in TNBC cell lines
of African ancestry, including DNMT. A DNAmethyltransferase, DNMT ex-
pression has been shown to be overexpressed specifically in TNBC associated
with poor survival (40). It functions include a repression of estrogen receptor
expression and signaling, promotion of epithelial-to-mesenchymal transition,
activation of cellular autophagy, and cancer stem cell growth, achieving these
functions through the hypermethylation of the estrogen receptor promoter re-
gion, tumor suppressor genes, and other cancer progression inhibiting factors
(40). DNMT1 inhibitors have shown antitumorigenic activity and enhance sen-
sitivity to immunotherapies. Our findings suggest that targeting this candidate
gene may have preferential benefit for patients of African descent and more
extensive follow-up studies are warranted to better understand its ancestry-
specific role. Pathway enrichment analyses identified numerous significantly
enriched pathways upregulated in AA TNBC lines, including those involved
in cancer metabolism, inflammation, and cell adhesion. One particularly inter-
esting finding was the enrichment of inflammatorymediator regulation of TRP
channels specific to African ancestry, driven in part by the upregulation of sev-
eral members of the TRP calcium ion channel superfamily, including TRPM,
TRPM, TRPV, and TRPS. TRP channels and their regulation of Ca2+ sig-
naling have been shown to induce cancer proliferation, metastasis, and drug

resistance. Accordingly, they are emerging as novel candidates for therapeu-
tic targeting; yet their connection to African ancestry was previously unknown
prior to these findings, which may now warrant further investigation to evalu-
ate their potential for enhanced efficacy inAAwomenwith breast cancer.While
it was perhaps counterintuitive to find enriched pathways in estrogen response,
closer examination of the genes responsible for driving that overrepresentation
have functions outside of estrogen response and known roles in TNBC, in-
cluding SLCA, which is implicated in epithelial-to-mesenchymal transition
in TNBC (58), FAMA, which is differentially expressed in BRCA-mutated
cancers (59) that tend to be triple-negative, andCDH, which is linked to TNBC
proliferation and invasion (60). Furthermore, AA-associated DEGs driving the
putative estrogen response pathway included several genes associated with cel-
lular junctions, such as ZO-/TJP, CELSR, claudin-, which is overexpressed
in TNBC and associated with worse outcomes (61).

Of interest, one upregulated pathway related to African ancestry was hypoxia,
which commonly develops in TNBC and may vary in its extent by ancestral
background, as suggested recently (47). This prompted us to further explore
how TNBC cells of differing ancestral backgrounds responded to hypoxic con-
ditions. This led us to identify a core set of differentially bound ancestry-specific
TFs exacerbated under hypoxia. A tight network with high TF coexpres-
sion emerged in EA-derived TNBC, with enrichment of MAPK signaling and
several anti-inflammatory cytokines. In TNBC of African ancestry, a large, ex-
tensive TF network with numerous nodes and connections was constructed.
Among the many significantly enriched pathways related to these hypoxia-
induced TFs, common themes of oxidative stress, DNA damage, apoptosis, and
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cell cycle emerged, with p53 appearing as a central node. Upon examination of
top DEGs from DARs in promoter regions, top genes specific to EA-derived
TNBC cells were associated with tumor suppressive and antiproliferative roles,
while top genes specific to AA-derived TNBC cells were implicated in STING-
driven immune response and cell migration/invasion. When taken together,
these data not only enhances our understanding of ancestry-specific hypoxia
response, but at a broader level may also suggest that the underlying molecular
differences inTNBCby genetic ancestry could contribute to distinct response to
other experimental manipulations and perturbations. This could have implica-
tions formechanistic work, drug discovery, response to therapy, and other work
based on in vitro models, thereby further underscoring that donor ancestry
should be considered in experimental design.

Understanding the contribution of genetic ancestry to breast cancer dispari-
ties in disease aggressiveness and outcomes is a current research priority in
the field. Work championed by several investigators in this field has moved
the needle considerably in evaluating African ancestry as a true biologic de-
terminant of TNBC separate from race (6, 7, 62, 63). Indeed, several notable
studies have identified ancestry-related gene signatures in human TNBC tu-
mors (7, 63, 64), which were largely dominated by differential immune cell
infiltrates and activation. Here, we explore this important scientific question
through the lens of epigenetic, rather than transcriptional regulation. This gives
us the opportunity to expand our understanding of genetic ancestry by look-
ing at the upstream master regulators of gene expression—TFs—which were
central to our investigation. Our findings have shown that African ancestry in
TNBC is associated with the distinct activity of critical TFs and downstream
gene expression changes that may contribute in part to observed disparities in
tumor aggressiveness in this population group. Furthermore, our study focuses
on human cell lines, rather than patient tumors, to explore genetic ancestry at
the molecular level independent of common confounders that are inextricably
linked to human cohorts, such as socioeconomic status, access to quality health
care, comorbidities, lifestyle factors, and other socioenvironmental factors that
play central roles to cancer disparities, thereby allowing this in vitro-based
study to further bolster existing evidence in the field that genetic ancestry may
contribute to worsened TNBC biology.

Finally, the findings from this study may have broader implications beyond
TNBC. Human cancer cell lines are foundational to basic science discovery,
drug development, and preclinical research. The cell lines selected in this study
represent common breast cancer lines used routinely in cancer research at

the bench. We found that the cellular behavior and response to experimental
conditions can vary as a result of ancestral origin. This suggests that the ances-
tral origin of patient-derived cell lines matters and the development and use of
diversely sourced cell lines should be considered in experimental design in in
vitro studies. Not only can this approach improve study rigor by reducing er-
roneous biologic variation between studies, but it also represents a step toward
improving inclusivity and increasing health equity even at this most basic level
in biomedical research.
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