Treatment of Metastatic Castration Resistant Prostate Cancer

Ravi A. Madan, MD
Clinical Director
Genitourinary Malignancies Branch
National Cancer Institute
Center for Cancer Research, National Institutes of Health
What I will not talk about today

- Treatment of primary disease
- Treatment of non-metastatic biochemically recurrent disease
What I will not talk about today

• Treatment of primary disease
 - Surgery is curative for localized disease
 - Radiation is curative for localized disease (with androgen deprivation for high risk)

• Treatment of non-metastatic (biochemically recurrent) disease
 - Surveillance and androgen deprivation are both options
 - PSA doubling time is metric that can be used to evaluate pace of disease (retrospective data)
Prostate Cancer Clinical States
Castrate resistant prostate cancer

What is Castration Resistance Prostate Cancer?

- Progressive disease despite castration levels of testosterone (50 ng/dL)

- Progression could be PSA or Imaging

- The androgen receptor drives prostate cancer growth
 - Depriving the tumor of testosterone is the primary therapy for metastatic disease
Anti-androgen therapy

So why do we use Anti-Androgen therapy in CRPC?

Resistance Mechanisms:
- AR Amplification
- Secondary androgen production
- Ligand independent growth
- Intranuclear changes

Integrative clinical genomics

Integrative Clinical Genomics of Advanced Prostate Cancer

Prostate cancer rules

Rules of the Game:
Prostate Cancer Working Group

- PSA is **NOT** the primary measure of progression in mCRPC
- Radiographic imaging is the primary objective measure
- Patient symptoms and treatment tolerability also paramount

Scher, HI et al J. Clin Oncol, 2008
Optimal treatment sequence

Optimal Treatment Sequence?

- No clear data for sequencing treatment in metastatic castration resistant prostate cancer (*mCRPC*)
- Ongoing trials will evaluate this question further
- In the absence of data I will provide *my opinion* on treatment selection
- Treatment decisions should be made with understanding of the following factors
 - Treatment side effects
 - Patient co-morbidities
 - Patient symptoms
 - Pace of disease
Prostate cancer menu

Menu

Appetizer
- Sipuleucel-T

First Course
- Enzalutamide
- Abiraterone

Second Course
- Docetaxel
- Radium-223

Third Course
- Cabazitaxel
 Options from 1st or 2nd Course
Prostate cancer appetizer

MENU

Appetizer
Sipuleucel-T
early mCRPC
minimal symptoms, low volume, slow pace

- First Course
 - Enzalutamide
 - Abiraterone

- Second Course
 - Docetaxel
 - Radium-223

- Third Course
 - Cabazitaxel

Options from 1st or 2nd Course
Therapeutic Cancer Vaccine: Sipuleucel-T

Day 1
Leukapheresis

Apheresis Center

Day 2-3
sipuleucel-T is manufactured

Company (Dendreon)

Day 3-4
Patient is infused

Doctor’s Office
IMPACT: Randomized Phase 3 Trial

Primary endpoint:
Secondary endpoint:

Overall Survival
Time to Objective Disease Progression

Kantoff PW et al. NEJM. 2010;363:411-22
Sipuleucel-T: IMPACT Overall Survival

P = 0.032 (Cox model)
HR = 0.775 [95% CI: 0.614, 0.979]

Median Survival Benefit = 4.1 Mos.

Sipuleucel-T (n = 341)
Median Survival: 25.8 Mos.

Placebo (n = 171)
Median Survival: 21.7 Mos.
Sipuleucel-T: IMPACT Overall Survival

No Change in PFS, Rare PSA Declines

\[P = 0.032 \text{ (Cox model)} \]
\[HR = 0.775 \text{ [95\% CI: 0.614, 0.979]} \]

Median Survival Benefit = 4.1 Mos.

- Sipuleucel-T (n = 341)
 Median Survival: 25.8 Mos.

- Placebo (n = 171)
 Median Survival: 21.7 Mos.

Kantoff PW et al. NEJM. 2010
PSA and Sipuleucel-T

Patients with Lower PSA Had Greater OS Benefit After Sipuleucel-T

<table>
<thead>
<tr>
<th>Baseline PSA (ng/ml)</th>
<th><22 (n=188)</th>
<th>22-50 (n=128)</th>
<th>50-134 (n=128)</th>
<th>>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS (mos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sipuleucel-T</td>
<td>41.3</td>
<td>27.1</td>
<td>20.4</td>
<td>18.4</td>
</tr>
<tr>
<td>Control</td>
<td>28.3</td>
<td>20.1</td>
<td>15.0</td>
<td>15.6</td>
</tr>
<tr>
<td>Difference</td>
<td>13.0</td>
<td>7.0</td>
<td>5.4</td>
<td>2.8</td>
</tr>
<tr>
<td>HR</td>
<td>0.51</td>
<td>0.74</td>
<td>0.81</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Schellhammer PF et al. Urol. 2013
Sipuleucel-T Toxicity

• Chills, fatigue, fever, nausea, and headache

• Cerebrovascular events were reported in 3.5 percent of patients treated with sipuleucel-T patients and 2.4 percent of patients who received placebo.
Prostate cancer first course

MENU

Appetizer
Sipuleucel-T

First Course
minimal to moderate symptoms
Enzalutamide
minimal side effects, optimal in low volume, slow pace of disease
Abiraterone

Second Course
Docetaxel
Radium-223

Third Course
Cabazitaxel
Enzalutamide

MENU

Appetizer
Sipuleucel-T

First Course
minimal to moderate symptoms
Enzalutamide
Abiraterone
requires concomitant prednisone

Second Course
Docetaxel
Radium-223

Third Course
Cabazitaxel
Enzalutamide

A small molecule AR antagonist

Affinity 30 folds of bicalutamide

Prevent nuclear translocation

Prevents co-activator recruitment

1. AR Binding Affinity
 - DHT: ~5nM
 - Bicalutamide: ~160 nM
 - MDV3100: ~35 nM

2. Nuclear Import
 - DHT: ++++
 - Bicalutamide: ++++
 - MDV3100: ++

3. DNA Binding
 - DHT: ++++
 - Bicalutamide: ++
 - MDV3100: (-)

4. Coactivator recruitment
AFFIRM

AFFIRM: Randomized Phase III Study of MDV3100 vs. Placebo in mCRPC after Progression on Docetaxel

Castration Resistant Prostate Cancer (N=1199)

Enzalutamide 160mg/day Corticosteroids allowed but not required

2:1

Placebo
AFFIRM: Phase III trial with 1199 patients with mCRPC Previously treated with docetaxel OS: 18/4 to 13.6 mos (HR: 0.63; P<0.001) TTP: 8.3 vs 2.9 mos (HR: 0.40; P <0.001) FDA approved on 8/31/2012
PREVAIL: Randomized Phase III Study of Enzalutamide vs Placebo in mCRPC before chemotherapy
Enzalutamide Toxicity

Cardiovascular: Peripheral edema (15%)
Central nervous system: Fatigue (51%), headache (12%)
Endocrine & metabolic: Hot flashes (20%)
Gastrointestinal: Diarrhea (22%)
Hematologic: Neutropenia (15%; grades 3/4: 1%)
Neuromuscular & skeletal: Back pain (26%), arthralgia (21%), musculoskeletal pain (15%)
Respiratory: Upper respiratory tract infection (11%)
Abiraterone

MENU

Appetizer
Sipuleucel-T

First Course
Enzalutamide
Abiraterone
requires concomitant prednisone

Second Course
Docetaxel
Radium-223

Third Course
Cabazitaxel
Options from 1st or 2nd Course
Abiraterone rationale

Rationale for Abiraterone in CRPC

- There is up-regulation of androgen biosynthesis enzymes in CRPC
- Blocks androgen synthesis by the adrenal glands, testes and within the prostate tumor tissue

Abiraterone study

Abiraterone: COU-AA-301 Study Design

- N = 1195
- Progressive, mCRPC
- Previous docetaxel
- ECOG 0 – 2
- Medical or surgical castration with serum testosterone < 50 ng/dL

Randomized 2:1

Abiraterone acetate
1000 mg orally daily
Prednisone
5 mg orally twice daily
n = 797

Placebo orally daily
Prednisone 5 mg orally twice daily
n = 398

Primary end point:
- Overall Survival (OS)

- This study was conducted in 147 sites in 13 countries
- Patients were enrolled from May 2008 through July 2009

De Bono J, et al. NEJM 2011
Abiraterone: COU-AA-301 Trial
Abiraterone: COU-AA-301 Trial

<table>
<thead>
<tr>
<th>Variable</th>
<th>Abiraterone Acetate (N = 797)</th>
<th>Placebo (N = 398)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to PSA progression (mo)</td>
<td>10.2</td>
<td>6.6</td>
<td>0.58 (0.46–0.73)</td>
<td><0.001</td>
</tr>
<tr>
<td>Progression-free survival according to radiographic evidence (mo)</td>
<td>5.6</td>
<td>3.6</td>
<td>0.67 (0.59–0.78)</td>
<td><0.001</td>
</tr>
<tr>
<td>PSA response rate (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38.0</td>
<td>10.1</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Confirmed response on the basis of the PSA concentration</td>
<td>29.1</td>
<td>5.5</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Objective response on the basis of imaging studies</td>
<td>14.0</td>
<td>2.8</td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

Source: de Bono JS et al. NEJM 2011
COU-AA-302 (chemo-naïve)

Ryan CJ, Lancet Oncol, 2015
Abiraterone Toxicity

Cardiovascular: Edema (25% to 27%), hypertension (9% to 22%; grades 3/4: 1% to 4%)

Central nervous system: Fatigue (39%), insomnia (14%)

Dermatologic: Bruise (13%)

Endocrine & metabolic: Increased serum triglycerides (63%), hyperglycemia (57%), hypernatremia (33%), hypokalemia (17% to 28%; grades 3/4: 3% to 5%), hypophosphatemia (24%; grades 3/4: 7%), hot flash (19% to 22%)

Gastrointestinal: Constipation (23%), diarrhea (18% to 22%), dyspepsia (6% to 11%)

Genitourinary: Urinary tract infection (12%)

Hematologic: Lymphocytopenia (38%; grades 3/4: 9%)

Hepatic: Increased serum ALT (11% to 42%; grades 3/4: 1% to 6%), increased serum AST (31% to 37%; grades 3/4: 2% to 3%)

Neuromuscular & skeletal: Joint swelling (30%, including joint discomfort), myalgia (26%)

Respiratory: Cough (11% to 17%), upper respiratory infection (5% to 13%), dyspnea (12%), nasopharyngitis (11%)
Cross resistance

Evidence for cross-resistance
- Enzalutamide
- Abiraterone

First Course
- Many patients may not benefit from sequential use

Second Course
- Docetaxel
- Radium-223

Third Course
- Cabazitaxel
- Options from 1st or 2nd Course
Overlapping resistance

Overlapping Resistance: Androgen Receptor Splice Variants

- Variable splicing of AR mRNA can lead to resistance mechanisms to anti-androgen therapy
- ARV-7 has been investigated extensively, lacks a ligand binding domain and is constitutently active
- Increases in ARV-7 seen after treatment with Abiraterone/Enzalutamide, likely contributing to cross-resistance.
- Thus sequential abiraterone and enzalutamide use may not have additive benefits

Docetaxel

MENU

Appetizer
- Sipuleucel-T

First Course
- Enzalutamide
- Abiraterone

Second Course
- Moderate to substantial symptoms
- **Docetaxel**
- Radium-223

Third Course
- Cabazitaxel
- Options from 1st or 2nd Course
For fast paced disease

MENU

Appetizer
Sipuleucel-T

First Course
Enzalutamide
Abiraterone

Second Course
Moderate to substantial symptoms
Docetaxel

perhaps the best option for patients with substantial symptoms, fast paced disease
Radium-223

Third Course
Cabazitaxel

Options from 1st or 2nd Course
Docetaxel

- In 1960s, crude extract of the bark of the Pacific yew tree, Taxus brevifolia, was shown to have suppressive activity in preclinical tumor models.

- By 1971, paclitaxel was identified as the active constituent of the bark extract.

- Taxanes exhibit antimicrotubule and antitumor activity

- *Emerging data suggests that taxanes inhibit AR translocation via microtubules*
Phase III study

TAX327: A Multicenter, Randomized Phase III Study of 3 weekly Docetaxel + Prednisone vs. Weekly Docetaxel + Prednisone vs. Mitoxantrone + Prednisone

Castration Resistant Prostate Cancer (N=1006)

- Docetaxel 75mg/m2 Q3wks + Prednisone 10mg daily
- Docetaxel 30mg/m2 Q1wk + Prednisone 10mg daily
- Mitoxantrone 12mg/m2 Q3wks + Prednisone 10mg daily

TAX327: Overall Survival

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median Survival (mos)</th>
<th>Hazard Ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docetaxel 3 wkly</td>
<td>18.9</td>
<td>0.76</td>
<td>0.009</td>
</tr>
<tr>
<td>Docetaxel wkly</td>
<td>17.3</td>
<td>0.91</td>
<td>0.3</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>16.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Docetaxel Toxicity

Central nervous system: Central nervous system toxicity (20% to 58%; severe: 6%; including neuropathy)

Dermatologic: Alopecia (56% to 76%), dermatological reaction (20% to 48%; severe: ≤5%), nail disease (11% to 41%)

Endocrine & metabolic: Fluid retention (13% to 60%; severe: 7% to 9%; dose dependent)

Gastrointestinal: Stomatitis (19% to 53%; severe 1% to 8%), diarrhea (23% to 43%; severe: 5% to 6%), nausea (34% to 42%), vomiting (22% to 23%)

Hematologic & oncologic: Neutropenia (84% to 99%; grade 4: 75% to 86%; nadir [median]: 7 days, duration [severe neutropenia]: 7 days; dose dependent), leukopenia (84% to 99%; grade 4: 32% to 44%), anemia (65% to 97%; dose dependent; grades 3/4: 8% to 9%), thrombocytopenia (8% to 14%; grade 4: 1%; dose dependent), febrile neutropenia (5% to 14%; dose dependent)

Hepatic: Increased serum transaminases (4% to 19%)

Hypersensitivity: Hypersensitivity (1% to 21%; with premedication 15%)

Infection: Infection (1% to 34%; dose dependent)

Neuromuscular & skeletal: Weakness (53% to 66%; severe 13% to 18%), myalgia (3% to 23%), neuromuscular reaction (16%)

Respiratory: Pulmonary reaction (41%)
Radium

MENU

Appetizer
Sipuleucel-T

First Course
Enzalutamide
Abiraterone

Second Course
Moderate to substantial symptoms
Docetaxel
Radium-223

symptomatic bone disease, no visceral disease; ideal patient population unknown

Third Course
Cabazitaxel

Options from 1st or 2nd Course
Radium-223 (Alpharadin)

Bone –targeting radiopharmaceutical
High energy alpha-particles with short range (<100μm) hence less bone marrow toxicity
Radium trial

ALSYMPCA: Randomized Phase III Study of Radium-223 vs. Placebo in mCRPC with bone metastases

CRPC
Symptomatic
≥2 bone mets
(N=922)

Ra-223 50kBq/kg q4wks x 6

2:1

Placebo
Phase III study of Radium-223

ALSYMPCA: Randomized Phase III Study of Radium-223 vs. Placebo in mCRPC with bone metastases

A Overall Survival

<table>
<thead>
<tr>
<th>Months since Randomization</th>
<th>No. at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radium-223</td>
</tr>
<tr>
<td>0</td>
<td>614</td>
</tr>
<tr>
<td>3</td>
<td>578</td>
</tr>
<tr>
<td>6</td>
<td>504</td>
</tr>
<tr>
<td>9</td>
<td>369</td>
</tr>
<tr>
<td>12</td>
<td>274</td>
</tr>
<tr>
<td>15</td>
<td>178</td>
</tr>
<tr>
<td>18</td>
<td>105</td>
</tr>
<tr>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>24</td>
<td>41</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>307</td>
</tr>
<tr>
<td>3</td>
<td>288</td>
</tr>
<tr>
<td>6</td>
<td>228</td>
</tr>
<tr>
<td>9</td>
<td>157</td>
</tr>
<tr>
<td>12</td>
<td>103</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>0</td>
</tr>
</tbody>
</table>

Hazard ratio, 0.70 (95% CI, 0.58–0.83) P<0.001
Overall survival

TROPIC: Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>MP</th>
<th>CBZP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS (months)</td>
<td>12.7</td>
<td>15.1</td>
</tr>
<tr>
<td>Hazard Ratio</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>0.59–0.83</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td><.0001</td>
<td></td>
</tr>
</tbody>
</table>

de Bono JS. et al. Lancet. 2010
Radium toxicity

Radium 223 AEs

- Cardiovascular: Peripheral edema (13%)
- Gastrointestinal: Nausea (36%), diarrhea (25%), vomiting (19%)
- Hematologic: Anemia (93%; grades 3/4: 6%), lymphocytopenia (72%; grades 3/4: 20%), leukopenia (35%; grades 3/4: 3%), thrombocytopenia (31%; grades 3/4: 1% to 6%), neutropenia (18%; grades 3/4: 1% to 3%)
Third course

MENU

Appetizer
Sipuleucel-T

First Course
Enzalutamide
Abiraterone

Second Course
Docetaxel
Radium-223

Third Course
Docetaxel refractory
Cabazitaxel

Options from 1st or 2nd Course
Cabazitaxel

Novel taxane active in docetaxel resistant cell lines
Less affinity for P-glycoprotein pump
Methoxyl side chain instead of hydroxyl groups found in docetaxel
TROPIC protocol

TROPIC: Randomized Phase III Study of Cabazitaxel vs. Mitoxantrone in mCRPC after Progression on Docetaxel

Castration Resistant Prostate Cancer (N=755)

1:1

Cabazitaxel 25mg/m2 Q3wks + Prednisone 10mg daily

Mitoxantrone 12mg/m2 Q3wks + Prednisone 10mg daily

de Bono JS. et al. Lancet. 2010
TROPIC: Progression-Free Survival

TROPIC: Progression-Free Survival

Proportion of PFS (%)

<table>
<thead>
<tr>
<th>Median PFS (months)</th>
<th>1.4</th>
<th>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard Ratio</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>0.64–0.86</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td><.0001</td>
<td></td>
</tr>
</tbody>
</table>

PFS composite endpoint: PSA progression, pain progression, tumor progression, symptom deterioration, or death.

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>MP</th>
<th>CBZP</th>
</tr>
</thead>
<tbody>
<tr>
<td>377</td>
<td>115</td>
<td>168</td>
</tr>
<tr>
<td>115</td>
<td>52</td>
<td>90</td>
</tr>
<tr>
<td>52</td>
<td>27</td>
<td>52</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TROPIC: Overall Survival

Proportion of OS (%)

<table>
<thead>
<tr>
<th></th>
<th>MP</th>
<th>CBZP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS (months)</td>
<td>12.7</td>
<td>15.1</td>
</tr>
<tr>
<td>Hazard Ratio</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>0.59–0.83</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td><.0001</td>
<td></td>
</tr>
</tbody>
</table>

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>MP</th>
<th>CBZP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 months</td>
<td>377</td>
<td>378</td>
</tr>
<tr>
<td>6 months</td>
<td>300</td>
<td>321</td>
</tr>
<tr>
<td>12 months</td>
<td>188</td>
<td>231</td>
</tr>
<tr>
<td>18 months</td>
<td>67</td>
<td>90</td>
</tr>
<tr>
<td>24 months</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>30 months</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Cabazitaxel Toxicity

Central nervous system: Fatigue (37%), fever (12%)
Gastrointestinal: Diarrhea (47%; grades 3/4: 6%), nausea (34%), vomiting (22%), constipation (20%), abdominal pain (17%), anorexia (16%), taste alteration (11%)
Hematologic: Anemia (98%; grades 3/4: 11%), leukopenia (96%; grades 3/4: 69%), neutropenia (94%; grades 3/4: 82%; nadir: 12 days [range: 4-17 days]), thrombocytopenia (48%; grades 3/4: 4%)
Neuromuscular & skeletal: Weakness (20%), back pain (16%), peripheral neuropathy (13%; grades 3/4: <1%), arthralgia (11%)
Renal: Hematuria (17%)
Respiratory: Dyspnea (12%), cough (11%)
Cabazitaxel and ASCO

Cabazitaxel at ASCO 2016

• Cabazitaxel was not superior to docetaxel in front-line chemotherapy setting

• Cabazitaxel at 20 mg has same long term outcomes as Cabazitaxel at 25 mg
Third course

MENU

Appetizer
Sipuleucel-T

First Course
Enzalutamide
Abiraterone

Second Course
Docetaxel
Radium-223

Third Course
Docetaxel refractory
Cabazitaxel
Enzalutamide
Abiraterone
Radium-223

OS data post docetaxel
Complete menu

MENU

Appetizer
Sipuleucel-T

First Course
Enzalutamide
Abiraterone

Second Course
Docetaxel
Radium-223

Third Course
Cabazitaxel
Enzalutamide
Abiraterone
Radium-223

Ultimate Goal: Use as many items on the menu while also maximizing quality of life
Cost of Treatments

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Approval Date</th>
<th>Large Group Commercial Rate ($)</th>
<th>Medicare Rate ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiraterone acetate</td>
<td>2011</td>
<td>5,171.90</td>
<td>6,409.11</td>
</tr>
<tr>
<td>Bicalutamide</td>
<td>1995</td>
<td>Generic, 82; brand, 520</td>
<td>Generic, 28; brand, 527</td>
</tr>
<tr>
<td>Cabazitaxel†</td>
<td>2010</td>
<td>11,233.78</td>
<td>12,806.06</td>
</tr>
<tr>
<td>Degarelix</td>
<td>2008</td>
<td>445.53</td>
<td>536.75</td>
</tr>
<tr>
<td>Docetaxel†</td>
<td>1999</td>
<td>Brand (pregeneric), 3,006.19</td>
<td>Generic, 681.67</td>
</tr>
<tr>
<td>Enzalutamide</td>
<td>2012</td>
<td>†</td>
<td>7,906.34</td>
</tr>
<tr>
<td>Flutamide</td>
<td>1989</td>
<td>79.65</td>
<td>125.80</td>
</tr>
<tr>
<td>Goserelin acetate</td>
<td>1995</td>
<td>596.00</td>
<td>210.32</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>1999</td>
<td>66.52</td>
<td>19.22</td>
</tr>
<tr>
<td>Leuprolide acetate</td>
<td>1998</td>
<td>356.00</td>
<td>202.84</td>
</tr>
<tr>
<td>Mitoxantrone†</td>
<td>1987</td>
<td>615.63</td>
<td>203.96</td>
</tr>
<tr>
<td>Nilutamide</td>
<td>1996</td>
<td>464.13</td>
<td>4,201.38</td>
</tr>
<tr>
<td>Prednisone</td>
<td>1974</td>
<td>3.75</td>
<td>6.50</td>
</tr>
<tr>
<td>Radium-223</td>
<td>2013</td>
<td>12,455.00†</td>
<td>12,455.00†</td>
</tr>
<tr>
<td>Sipuleucel-T−s</td>
<td>2010</td>
<td>40,670.42</td>
<td>34,672.58</td>
</tr>
</tbody>
</table>

Bash et al, CJ et al. JCO. 2014
Cost of treatments

Cost of Treatments

Table 3. Treatment Costs in Patients With CRPC for 30-Day Period (oral drugs) or One Infusion/Cycle (parenteral drugs)

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Approval Date</th>
<th>Large Group Commercial Insurance Rate ($)</th>
<th>Medicare Rate ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiraterone acetate</td>
<td>2011</td>
<td>5,171.90</td>
<td>6,409.11</td>
</tr>
<tr>
<td>Bicalutamide</td>
<td>1995</td>
<td>Generic, 82; brand, 520</td>
<td>Generic, 28; brand, 527</td>
</tr>
<tr>
<td>Cabazitaxel†</td>
<td>2010</td>
<td>11,233.78</td>
<td>12,806.06</td>
</tr>
<tr>
<td>Degarelix</td>
<td>2008</td>
<td>445.53</td>
<td>536.75</td>
</tr>
<tr>
<td>Docetaxel†</td>
<td>1999</td>
<td>Brand (pregeneric), 3,006.19</td>
<td>Generic, 681.67</td>
</tr>
<tr>
<td>Enzalutamide</td>
<td>2012</td>
<td>†</td>
<td>7,906.34</td>
</tr>
<tr>
<td>Flutamide</td>
<td>1989</td>
<td>79.65</td>
<td>125.80</td>
</tr>
<tr>
<td>Goserelin acetate</td>
<td>1995</td>
<td>596.00</td>
<td>210.32</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>1999</td>
<td>66.52</td>
<td>19.22</td>
</tr>
<tr>
<td>Leuprolide acetate</td>
<td>1998</td>
<td>356.00</td>
<td>202.84</td>
</tr>
<tr>
<td>Mitoxantrone†</td>
<td>1987</td>
<td>615.63</td>
<td>203.96</td>
</tr>
<tr>
<td>Nilutamide</td>
<td>1996</td>
<td>464.13</td>
<td>4,201.38</td>
</tr>
<tr>
<td>Prednisone</td>
<td>1974</td>
<td>3.75</td>
<td>6.50</td>
</tr>
<tr>
<td>Radium-223</td>
<td>2013</td>
<td>12,455.00†</td>
<td>12,455.00†</td>
</tr>
<tr>
<td>Sipuleucel-T§</td>
<td>2010</td>
<td>40,670.42</td>
<td>34,672.58</td>
</tr>
</tbody>
</table>

FDA-Approved for mCRPC
E3805-CHAARTED Treatment

STRATIFICATION
- Extent of Mets
 - High vs Low
- Age
 - ≥70 vs < 70yo
- ECOG PS
 - 0-1 vs 2
- CAB> 30 days
 - Yes vs No
- SRE Prevention
 - Yes vs No
- Prior Adjuvant ADT
 - ≤12 vs > 12 months

RANDOMIZE

ARM A:
ADT + Docetaxel
75mg/m2 every 21 days for maximum 6 cycles

ARM B:
ADT (androgen deprivation therapy alone)

Evaluate every 3 weeks while receiving docetaxel and at week 24 then every 12 weeks

Evaluate every 12 weeks

Follow for time to progression and overall survival

Chemotherapy at investigator’s discretion at progression

- ADT allowed up to 120 days prior to randomization.
- Intermittent ADT dosing was not allowed.
- Standard dexamethasone premedication but no daily prednisone.

Presented by: Christopher J. Sweeney, MBBS
Survival curve

Hazard ratio for death with ADT+docetaxel, 0.61 (95% CI, 0.47–0.80) P<0.001

ADT+docetaxel (median overall survival, 57.6 mo)

ADT alone (median overall survival, 44.0 mo)

Sweeney, CJ et al. NEJM. 2015
Prostate Cancer Clinical States

![Prostate Cancer Clinical States Diagram]

- Asymptomatic
- Symptoms
- Non-Metastatic
- Metastatic
- Castration Sensitive
- Castration Resistant
- Time

Key Events:
- Castration
- 2nd-line Hormonal therapy
- Sipuleucel-T 2010
- Abiraterone 2013 Enzalutamide 2014
- Docetaxel 2004
- Cabazitaxel 2010 Abiraterone 2011 Enzalutamide 2012 Radium-223
- Death
Docetaxel

CHAARTED/ E3805 supports docetaxel in metastatic castration-sensitive prostate cancer

Local Therapy not Curative

Castration

2nd-line Hormonal therapy

Asymptomatic

Symptoms

Metastatic

Castration Sensitive

Castration Resistant

Docetaxel 2004

Abiraterone 2013

Enzalutamide 2014

Cabazitaxel 2010

Abiraterone 2011

Enzalutamide 2012

Sipuleucel-T 2010

Radium-223 2013

Time →
CHAARTED: Subgroup analysis

Sweeney, CJ et al. NEJM. 2015
OS by extent of metastatic disease at the start of ADT

In patients with high volume metastatic disease, there is a 17 month improvement in median overall survival from 32.2 months to 49.2 months. We projected 33 months in ADT alone arm with collaboration of SWOG9346 team.
Subgroup analysis

CHAARTED: Subgroup Analysis

Should Low Volume Patients be Treated with this Regimen?

1. HR= 0.60 and curves may continue to separate

2. Study was not powered to look at subgroups

3. Toxicity and thus risks of therapy appear limited

Sweeney, CJ et al. NEJM. 2015
Table 3. Adverse Events of Grade 3 or Higher among the 390 Patients Who Received the Docetaxel-Containing Regimen and Had Follow-up Data Available.*

<table>
<thead>
<tr>
<th>Event</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of patients (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic reaction</td>
<td>7 (1.8)</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>16 (4.1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4 (1.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>2 (0.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neuropathy, motor</td>
<td>2 (0.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neuropathy, sensory</td>
<td>2 (0.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thromboembolism</td>
<td>1 (0.3)</td>
<td>2 (0.5)</td>
<td>0</td>
</tr>
<tr>
<td>Sudden death</td>
<td>0</td>
<td>0</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Anemia</td>
<td>4 (1.0)</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>0</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>12 (3.1)</td>
<td>35 (9.0)</td>
<td>0</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>15 (3.8)</td>
<td>9 (2.3)</td>
<td>0</td>
</tr>
<tr>
<td>Infection with neutropenia</td>
<td>5 (1.3)</td>
<td>4 (1.0)</td>
<td>0</td>
</tr>
<tr>
<td>Any event</td>
<td>65 (16.7)</td>
<td>49 (12.6)</td>
<td>1 (0.3)</td>
</tr>
</tbody>
</table>

Cycles Administered

<table>
<thead>
<tr>
<th>Arm A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ADT + Docetaxel (N=397)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number of cycles</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Sweeney, CJ et al. NEJM. 2015
Future Directions

- How to sequence the array of available and potential agents
- Multimodality therapy
- Understanding Mechanisms of Resistance