Pancreatic cancer

TRACO, 2016

Breakthrough Therapies

Clinical Advances

Pancreatic Cancer: Current Understanding and Future Challenges

S. Perwez Hussain
Pancreatic Cancer Unit
Laboratory of Human Carcinogenesis

Cancer incidence and mortality

CENTER FOR CANCER RESEARCH

Pancreatic Cancer Incidence and Mortality

- 4th Leading Cause of Cancer Deaths in the United States.
- Median Survival < 6 Months.
- Estimated 48,960 New Cases and 40,560 Deaths in 2015.
- No Effective Treatment.

CENTER FOR CANCER RESEARCH

Pancreatic Cancer: Second Leading Cause of Cancer-related Death by 2030

Risk factors

Risk Factors and Inherited Syndromes

Variable	Approximate Risk
Risk factor	
Smoking ³	2–3
Long-standing diabetes mellitus ⁴	2
Nonhereditary and chronic pancreatitis ⁵	2–6
Obesity, inactivity, or both ⁶	2
Non-O blood group ⁷	1-2
Genetic syndrome and associated gene or genes — %	
Hereditary pancreatitis (PRSS1, SPINK1)8	50
Familial atypical multiple mole and melanoma syndrome $(p16)^9$	10–20
Hereditary breast and ovarian cancer syndromes (BRCA1, BRCA2, PALB2) ^{10,11}	1–2
Peutz-Jeghers syndrome (STK11 [LKB1]) ¹²	30-40
Hereditary nonpolyposis colon cancer (Lynch syndrome) (MLH1, MSH2, MSH6) ¹³	4
Ataxia-telangiectasia (ATM)14	Unknown
Li-Fraumeni syndrome (P53)15	Unknown

^{*} Values associated with risk factors are expressed as relative risks, and values associated with genetic syndromes are expressed as lifetime risks, as compared with the risk in the general population.

Pancreatic cancer patient treatment

Disappointing Progress in the Treatment of Pancreatic Cancer

Burris et. al., J. Clin. Oncol., 15, 1997

Moore et. al., J. Clin. Oncol. 25, 2007

Conroy et. al., NEJM, 36, 2011

Von Hoff, D.D. et. al, NEJM, 369, Oct, 2013

Wang-Gillam A., et. al., Lancet, Nov 20, 2015

Improved Survival in Resected Pancreatic Cancer Cases

Molecular Differences in Tumors Determine Patient Outcome?

Understanding Pancreatic Tumor Biology is Key to Improving Disease Outcome

Pancreatic carcinogenesis

Progression Model of Pancreatic Carcinogenesis

Pancreatic Intraepithelial Neoplasia

Prominent, Desmoplastic Stroma in Pancreatic Cancer

H/E

Biomarkers

Glypican-1 Positive Circulating Exosomes as a Biomarker for PDAC

Glycan-1 positive exosomes

Glypican-1 Positive Circulating Exosomes Predicts Prognosis in Resected PDAC Patients

Pancreatic cancer and tumor heterogeneity

Tumor heterogeneity and molecular subtyps.

Heterogeneity

Pancreatic Cancer is Highly Heterogenous

From: Jone, S. et al., Science, 321, 2008

Molecular subtypes

Are There Different Molecular Subtypes of PDAC?

Chromosomal structure

Variations in Chromosomal Structure and PDAC Subtypes

Stroma specific subtypes

Stroma-Specific Subtypes in Pancreatic Cancer

Four PDAC subtypes

Gene Expression Analysis Identified 4 PDAC Subtypes

(N=456)

Metabolic subtypes

Metabolic Subtypes in Pancreatic Cancer

Metabolic programming

Metabolic Reprogramming in Pancreatic Cancer

Dessert

Dessert Anyone?

RESEARCH HIGHLIGHTS

Nature Reviews Cancer | Published online 26 Aug 2016; doi:10.1038/nrc.2016.96

Feeding your friends

A characteristic feature of pancreatic ductal adenocarcinoma (PDAC) is a strong stromal reaction that is shaped by the activity of pancreatic stellate cells (PSCs). The resultant fibrosis impedes the tumour's access to a blood supply, creating an extremely hypoxic, nutrient-poor environment. the mitochondria and not in the cytosol. As a result, carbon derived from consumed alanine fed the tricarboxylic acid (TCA) cycle to increase oxygen consumption while not affecting glycolysis. Indeed, citrate

Pancreatic stellate cells

Pancreatic stellate cells support tumor metabolism

Stellate cells

Amino acids (Ala)

Cancer cells

- Fuels TCA cycle
- Supports lipid and NEAAs biosynthesis
- Shunts glucose to Ser/Gly biosynthesis

Supports proliferation (in low-nutrient environment)

Increases autophagy

 Releases free amino acids

Sousa, et. al., Nature, 2016

Therapeutic resistance

Complex Stromal Networks Supporting Pancreatic Cancer Progression and Therapeutic Resistance

Targeting cancer

Treatment Strategies to Improve Disease Outcome

Drug Delivery and Effectiveness of Systemic Therapy

Targeting Stroma

Mouse models

Pancreatic Cancer Mouse Model (KPC)

*LSL-Kras-G12D X p53 LSL R172H X Pdx-Cre 1

Pancreatic Ductal Adenocarcinoma (PDAC)

(Median Survival = 4-5 months)

H&E

Hedgehog signaling

Inhibition of Hedgehog Signaling Depleted Stroma, Enhanced Drug Delivery and Improved Survival in Mice

Stroma targeting

Enzymatic Targeting of Stroma Enhances Therapeutic Response

Therapeutic response

Enzymatic Targeting of Stroma Enhances Therapeutic Response

Anti-stromal tissue

Two Faces of Anti-Stromal Therapy

Stromal-targeting may not (always) have beneficial therapeutic response

Sonic Hedgehog as a Tumor Suppressor in PDAC

Genetically Engineered Mouse Model

F

A= Acinar to Ductal Metaplasia

1= PanIN1

2= PanIN2

3= PanIN3

CENTER FOR CANCER RESEARCH

Myofibroblast Depletion Enhances PDAC

Myofibroblast Depletion Enhances PDAC

Myofibroblast Depletion Reduces Overall Survival

GCV= genciclovir (Depletes Myofibroblasts in PKT;αSMA-tk+ Mice)

Tumor Stromal Interaction

Complex Tumor-Stromal Interaction in PDAC

Tumor-Stromal interaction is complex and therapeutic approaches targeting stroma needs caution and may require new molecular taxonomy in pancreatic cancer

Mesothelin and Immunotherapy

CENTER FOR CANCER RESEARCH

Mesothelin as a Target for Immunotherapy

CENTER FOR CANCER RESEARCH

Mesothelin targeted T cells

Mesothelin Targeted T Cells Lyse Tumor Cells and Increase Survival in KPC Mouse Model of PDAC

Stromnes et. al., Cancer Cell, 28, 2015

Organoid

Boj et. al., Cell, 160, 2015 Boj et. al., Mol. Cell. Onc., 2016 Hwang et. al., J. Pathology, 238, 2016

Inflammation and Pancreatic Cancer

Inflammation and Pancreatic Cancer

Pancreatic Cancer Development

Inflammatory Changes During Development and Progression of Pancreatic Cancer

From: Chu GC et al., J. Cell. Biochem, 101, 2007

CP= Chronic Pancreatitis
PSC= Pancreatic Stellate Cells
ECM= Extracellular Matrix

Inflammation and Pancreatic Cancer

Inflammation Enhances and Maintains a Pathologic Level of Oncogenic KRAS in Pancreatic Cancer

MIF and Cancer

Macrophage Migration Inhibitory Factor (MIF)

MIF, Inflammation and Cancer

MIF, Inflammation and Cancer

J. Exp. Med., 190, 1999

At the Crossroads of Inflammation and Tumorigenesis

By Carlos Cordon-Cardo* and Carol Prives[‡]

From the *Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021; and the †Department of Biological Sciences, Columbia University, New York, New York 10027

Molecular Cell, Vol. 17, 225-236, January 21, 2005, Copyright @2005 by Elsevier Inc. DOI 10.1016/j.molcel.2004.11.052

Macrophage Migration Inhibitory Factor MIF Interferes with the Rb-E2F Pathway

Oleksi Petrenko* and Ute M. Moll*

Immunity, 26, 2007

Perspective

Macrophage Migration Inhibitory Factor:
A Probable Link between Inflammation and Cancer

Richard Bucala^{1,*} and Seamas C. Donnelly^{2,*}

HYPOTHESIS

MIF Contributes to Pancreatic Cancer Progression and Predicts Disease Outcome.

MIF and PDAC

Increased expression of MIF in tumors from pancreatic ductal adenocarcinoma cases

MIF expression and HDAC survival

A higher expression of MIF is associated with poor survival in human PDAC

Human Pancreatic Carcinoma Cases

Variables (comparison/referent)	Univariable Analysis		Multivariable Analysis	
	HR (95%CI)	P	HR (95%CI)	P
MIF (High/Low)	2.21 (1.16-4.22)	0.016	2.26 (1.17-4.37)	0.015
Grading (G3-4/G1-2)	1.86 (1.01-3.45)	0.048	1.90 (1.02-3.54)	0.044
Resection margin (R1/R0)	1.53 (0.82-2.83)	0.178		
Stage (IIB-III/I-IIA)	1.62 (0.79-3.36)	0.191		

MIF expression and poor PDAC survival

A higher expression of MIF is associated with poor survival in human PDAC

Validation in Independent Cohorts

MIF accelerates tumor growth

MIF accelerates tumor growth and metastasis In orthotopic xenografts in mice

MIF and gene expression

MIF Induces a marked change in global gene expression profile including EMT-related genes in orthotopic tumors

 MIF over-expressing tumors are poorly differentiated.

- MIF induces a change in global gene expression profile.
- MIF over-expressing tumors showed expression of EMTmarker genes.

Exosomal MIF and PDAC

Exosomal MIF and Liver Metastasis in PDAC

ARTICLES

nature cell biology

Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver

Bruno Costa-Silva¹, Nicole M. Aiello², Allyson J. Ocean³, Swarnima Singh¹, Haiying Zhang¹, Basant Kumar Thakur^{1,4}, Annette Becker¹, Ayuko Hoshino¹, Milica Tešić Mark⁵, Henrik Molina⁵, Jenny Xiang⁶, Tuo Zhang⁶, Till-Martin Theilen¹, Guillermo García-Santos¹, Caitlin Williams¹, Yonathan Ararso¹, Yujie Huang¹, Gonçalo Rodrigues^{1,7}, Tang-Long Shen⁸, Knut Jørgen Labori⁹, Inger Marie Bowitz Lothe^{10,11}, Elin H. Kure¹¹, Jonathan Hernandez¹², Alexandre Doussot¹², Saya H. Ebbesen¹, Paul M. Grandgenett¹³, Michael A. Hollingsworth¹³, Maneesh Jain¹⁴, Kavita Mallya¹⁴, Surinder K. Batra¹⁴, William R. Jarnagin¹², Robert E. Schwartz¹⁵, Irina Matei¹, Héctor Peinado^{1,16}, Ben Z. Stanger^{2,19}, Jacqueline Bromberg^{17,19} and David Lyden^{1,18,19}

Pancreatic ductal adenocarcinomas (PDACs) are highly metastatic with poor prognosis, mainly due to delayed detection. We hypothesized that intercellular communication is critical for metastatic progression. Here, we show that PDAC-derived exosomes induce liver pre-metastatic niche formation in naive mice and consequently increase liver metastatic burden. Uptake of PDAC-derived exosomes by Kupffer cells caused transforming growth factor β secretion and upregulation of fibronectin production by hepatic stellate cells. This fibrotic microenvironment enhanced recruitment of bone marrow-derived macrophages. We found that macrophage migration inhibitory factor (MIF) was highly expressed in PDAC-derived exosomes, and its blockade prevented liver pre-metastatic niche formation and metastasis. Compared with patients whose pancreatic tumours did not progress, MIF was markedly higher in exosomes from stage I PDAC patients who later developed liver metastasis. These findings suggest that exosomal MIF primes the liver for metastasis and may be a prognostic marker for the development of PDAC liver metastasis.

MIF-induced disease

miRNA profiling

miRNA profiling of MIF-high and MIF-low tumors

 Hypothesis: MIF regulates miRNAs associated with tumor progression and disease aggressiveness in patient with pancreatic cancer

MIF axis in Pancreatic Cancer

MIF/miR-301b/NR3C2 Axis in Pancreatic Cancer

HYPOTHESIS

MIF/mir-301b/NR3C2 Signaling is a Potential Therapeutic Target in Pancreatic Cancer

Pancreatic Tumors Express MIF

Pancreatic tumors in KPC mice express a high level of MIF

(KPC: KRAS^{G12D}; P53^{R172H}; Pdx-1-Cre)

MIF Immunostaining

MIF deletion in genetically engineered mouse model of pancreatic cancer

MIF deficiency enhances survival

MIF-deficiency enhanced survival and reduced metastasis in KPC mice

KPC Mouse Model

CENTER FOR CANCER RESEARCH

MIF-deficiency reduced EMT in KPC mice

MIF deficiency increases NR3C2 expression

CENTER FOR CANCER RESEARCH

MIF-deficiency decreases miR-301b and increases NR3C2 expression

Strategies for MIF inhibition

SUMMARY

- A higher MIF expression is associated with poorer outcome in PDAC patients.
- MIF enhances growth and metastasis of tumor xenografts in mice.
- MIF-driven signaling inhibits NR3C2 by upregulating miR-301b.
- NR3C2 is a negative regulator of EMT.
- MIF-deficiency increased survival and reduced metastasis in KPC mice.
- MIF/mir-301b/NR3C2 signaling is a potential therapeutic target.

Understanding pancreatic tumor biology

Understanding Pancreatic Tumor Biology is Key to Improving Disease Outcome

