Nanotechnology

Nanotechnology for cancer therapy: benefits, concerns and effects on the immune system

Marina A. Dobrovolskaia Senior Principal Scientist, Immunology Section Head Nanotechnology Characterization Lab (NCL)

> November 28, 2016 marina@mail.nih.gov

Outline

Presentation outline

- Nanotechnology Definitions
- Nanoparticles in Daily Life
- Nanoparticles in Medical Applications
- Nanoparticles for Cancer Diagnosis and Therapy
 - Benefits of nanotechnology
 - Toxicity concerns
- Nanomaterials and the Immune System

What is nano?

What is Nano?

Nanotechnology:

"Research and technology development at the atomic, molecular or macromolecular scale leading to the controlled creation and use of structures, devices and systems with a length scale of approximately 1 - 100 nanometers (nm)." (Source: National Nanotech Initiative)

"Whether a material or end product is engineered to exhibit properties or phenomena, including physical or chemical properties or biological effects, that are attributable to its dimension(s), even if these dimensions fall outside the nanoscale range, up to one micrometer (1,000 nm)" (US FDA)

Nanoparticles

Nanoparticles in Daily Life

- Consumer products
 - ➤ 800+ "manufacturer identified" products from 400+ companies in 20+ countries
 - Clothing, wound dressings, washing machine liners
 - Sunglasses (lens coatings)
 - Sporting equipment

Nanosilver is in supplements and used to treat clothing

Speedo LZR TM Racer Swimsuit is treated in a nanotech cold-plasma process that reduces water absorption.

The Adidas Lone Star™track shoe includes a lightweight spike-plate made of carbon nanotubes

Turtle Wax™makes a nanotech car wax

Nanoparticles in daily life

Nanoparticles in Daily Life

 Nearly all translucent sunscreens contain nanoscale TiO₂ or ZnO₂

 Liposomes and emulsions are commonly used in cosmetics (L'Oreal holds more than 60 patents related to nanotechnology)

Carbon nanotube

 Carbon nanotubes are used as structural materials

Nanoparticles in medical applications in the second second

Nanotechnology

Nanoparticles in Medical Applications

Common features of Nanomedicines:

- Primary market is cancer therapy
- Intravenous administration
- <350 nm in size
- Neutral, hydrophilic surfaces
- Spherical

Nanoparticle type

Nanomedicine by Nanoparticle Type

- Dominant (> 10% of total) Investigational Nanomedicines: Liposomes > Polymeric NP > Emulsions > Solid NP
 - Dominant Commercial Nanomedicines: Solid NP > Nanocomposites

Nanotechnology

Cancer Nanotechnology

- Improve solubility; act as a carrier for hydrophobic drugs.
- Multifunctional capability
- Tumor targeting (reduced toxicity)
- Robotic tasks such as sensing, computation, and actuation; triggered responses.

McNeil, (2005), J. Leuk. Biol., 78:585-594

Douglas et al., (2012) Science, 335 831-834.

Benefits

Benefits: Drug Delivery and Targeting

EPR Effect = Passive Targeting

- Leaky neovasculature
- Particles cross endothelial barrier
- Particles are retained in the tumor

Active Targeting

- Surface chemistry allows functionalization w/ targeting molecules
 - Antibodies, e.g. Herceptin
 - Small molecules, e.g. folic acid
 - Cytokines, e.g. TNF-α

Reduced toxicity

Benefits: Reduced Toxicity

Traditional

Nano

Small Molecules

Therapeutic Proteins

Incorporation of conventional pharmaceuticals into nanotechnology-derived platforms helps decrease their immunotoxicity.

Immunotherapy

Benefits: Immunotherapy

The Immunotherapy Opdivo & Abraxane for Recurrent HER2-Negative Metastatic Breast Cancer

A Phase 1, Open-Label, Multicenter, Safety Study of Nivolumab (BMS-936558) in Combination With Nab-Paclitaxel Plus or Minus Gemcitabine in Pancreatic Cancer, Nab-Paclitaxel / Carboplatin in Stage IIIB/IV Non-Small Cell Lung Cancer or Nab-Paclitaxel in Recurrent Metastatic Breast Cancer (NCT02309177)

Abraxane is investigated in combination with a-PD-1 in clinical trials for metastatic breast cancer

Vaccines

Benefits: Vaccines

Lymphatic delivery

Benefits: lymphatic delivery

- Particle distribution to lymph nodes after i.d. injection depends on their size
- Lymphatic delivery benefits vaccines, HIV and infectious diseases therapy

Toxicity

Concerns: Toxicity

- Both nanocarrier and API can be toxic
- Some nanocarriers n a contribute to toxicity of API.

Toxicity

Concerns: Toxicity

- Both nanocarrier and API can be toxic
- API toxicity can "relocate" depending on the particle biodistribution

Immune system

Nanoparticles and the immune system

- Plasma Proteins
 - Biodistribution and MPS uptake
- Effects on erythrocytes
- Blood coagulation system
 - Platelets
 - Leukocytes
 - Endothelial cells
- Allergy
 - Complement activation
 - DTH
- Cytokines
- Immunogenicity

Bidirectional communication

Bidirectional Communication between Nanoparticles and Proteins

Binding of proteins to nanoparticle surface result in changes in particle properties

Properties and function of some proteins may also change after binding to the nanoparticle

Particle size

Particle size influences protein binding

Figure 2. Size of proteins in the corona compared to nanoparticles of varying diameter. Nanoparticles are represented in blue and the diameter is given by the number under each particle in nm. Serum albumin³¹ is shown in red and scaled relative to the nanoparticles. High-density lipoprotein is represented by orange spheres at a size of 12.5 nm diameter.

Protein binding

Protein binding affects particle size

Incubation with human plasma increases hydrodynamic size of nanoparticles

Bidistribution

Protein Binding and biodistribution

Dobrovolskaia et al., (2008), Mol. Pharm., 5:487-495.

Paciotti J. et al., (2004), Drug Delivery, 11:169-183.

- Particles which bind proteins are eliminated by MPS
- Particle surface protection (e.g with PEG) reduces protein binding and MPS
 - Good correlation between in vitro and in vivo

MPS uptake

MPS uptake

Capture Tumor Liver

Hijacking

- Two theories about nanoparticle distribution to the MPS
- Capture uptake by phagocytic cells in the tissue
- Hijacking uptake by circulating phagocytic cells which then take the particle to tissue

Spleen

Hemolysis

Hemolysis

Hemolysis

Hemolysis

Coagulation system

Coagulation system

Undesirable effects

Undesirbale effects on coagulation

Platelets

Platelets

Dobrovolskaia et al., Mol. Pharm, 2011

Platelet aggregation was induced by cationic PAMAM dendrimers, and increased with increasing particle size and greater number of surface amines.

Anionic and neutral dendrimers, irrespective of size and number of surface groups, did not induce platelet aggregation in vitro.

Zeta potential

Platelets: role of zeta potential

Platelets

Platelets: effect of composition

Triazine dendrimers are less potent in inducing platelet aggregation than their PAMAM counterparts

Triazine dendrimers were kindly provided by Dr. Eric Simanek, Texas Christian University

Leukocyte

Leukocyte Procoagulant Activity

Key events (occur through multiple mechanisms)

- Exposure of phosphotidylserine (PS) on cell surface
- Expression and/or de-encryption of tissue factor (TF)

Activation of extrinsic plasma coagulation cascade

- Cationic, but not anionic or neutral PAMAM dendrimers induced PCA in vitro
- Large particles are more reactive

Endothelial cells

Effects on endothelial cells

Allergenicity

Allergenicity

Table 2. Main characteristics of the different types of hypersensitivity reactions.

Characteristics	Type I (anaphylactic or immediate hypersensitivity)	Pseudoallergy	Type II (cytotoxic hypersensitivity)	Type III (immune complex mediated hypersensitivity)	Type IV (delayed hypersensitivity)
Main mediators	IgE, mast cells	Complement	Mainly IgG, natural killer cells, complement	IgG, IgM, complement	T helper cells and macrophages
Antigen	Exogenous	Exogenous	Cell surfaces	Soluble antigens	Bacteria, tissues
Time	15-30 min	15-30 min	minutes-hours	3-8 h	48-72 h
Skin reaction	Skin prick positive wheal and flare	Skin prick- negative		Intradermal injection (swelling and redness)	Mantoux-positive (erythema and induration)
Clinical manifestations	Allergic asthma, hay fever, anaphylactic shock	Urticaria, angioedema	Pemphigus, nephritis, autoimmune haemolytic anaemia, Goodpasture's syndrome	Serum sickness, fever, glomerulitis, vasculitis	Tuberculin test, poison ivy, contact dermatitis, maculopapular rashes, granuloma

Gonzalez-Fernandez A et al. Handbook of Immunological properties of Engineered Nanomaterials (2016), Vol 3

- Nanoparticles can be engineered to inhibit allergy (tolerogenic and drug-carrying nanoparticles)
- · Some nanoparticle can exaggerate allergy to traditional allergens
- Pseudoallergy is the most common and best studied reaction to nanomaterials
- · Rare example of cell-mediated allergy to dendrimers

Allerginicity

Allerginicity: CARPA to PEG-Liposomes

Complement activation is dose limiting toxicity of PEGylated liposomes

Complement activation

Complement activation: take home message

Allergenicity

Allergenicity: DTH to dendrimers

A case of toxic epidermal necrolysis-like dermatitis evolving from contact dermatitis of the hands associated with exposure to dendrimers

Contact Dermatitis 2008: 59: 122-123

- T. Toyama, H. Matsuda, I. Ishida, M. Tani,
- S. Kitaba, S. Sano and I. Katayama

Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

- Only one case of necrotizing dermatitis (type IV reaction) in response to dendrimers is reported in the literature: fever, chills, exudative erythema and fused bullae (Nikolsky's reaction)
- The mechanism is unknown

Cytokine storm

Cytokine storm: Lessons from biotechnology products:

TGN1412 = CD28 Super-MAB

Preclinical studies in NHP and rodents did not reveal cytokine storm

Phase I clinical trial: 6 of 6 volunteers experienced cytokine storm which lead to multiple organ failure

In vitro experiments using human PBMC showed high TNF levels in response to TGN1412

Cytokine storm

Cytokine Storm to nanomaterials can be predicted in vitro

elevated cytokines

In vitro (human PBMC)

NP = nanoparticle; PBMC = peripheral blood mononuclear cells;
IL- interleukin; TNF = tumor necrosis factor; LAL = limulus amebocyte lysate

IL-8

Lipid based particles induce IL-8

 Induction of IL-8 by liposomes follows induction of oxidative stress and can be prevented by antioxidant N-acetyl cysteine

Oxidative stress

Mechanism of IL-8 induction: oxidative stress

IL-1

Fibrous and Cationic Nanoparticles induce IL-1

Particle and Fibre Toxicology

2009, 6:35

Research
Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity
Raymond F Hamilton Jr1, Nianqiang Wu2, Dale Porter3, Mary Buford1, Michael Wolfarth3 and Andrij Holian*1

TiO₂ Nanospheres (NS)

TiO₂ Short Nanobelts (NB-1)

TiO₂ Long Nanobelts (NB-2)

- Long fibrous TiO₂ nanoparticles enhanced endotoxin-mediated IL-1
- Cationic dendrimers have similar property
- Enhancement of endotoxin-mediated inflammation is a serious safety concern due to common contamination of nanomaterials with bacterial LPS

IL-1

Mechanism of IL-1 induction: Proton sponge effect

Cationic particles induce IL-1β through activation of NLRP3 inflammasome triggered by a proton-sponge mechanism

Immunogenicity

Immunogenicity

Not immunogenic even in the presence of strong adjuvant

- Other C60-derivatives

- Gold colloids
- other PAMAM dendrimers

Immunogenic after conjugation to a protein carrier

Chen et al. (1998) PNAS, 95:10809-10813 Braden et al. (2000) PNAS 97:12193-12197

Lee SC et al. (2004) BloMed Microdevices 6:191-202

Immunogenicity

Immunogenicity

^{* -} antibodies were generated ONLY after conjugation to protein carrier and injection in the presence of strong adjuvants
ENM = engineered nanomaterials; ThPr = therapeutic protein; SWCNT = single wall carbon nanotubes; PAMAM = polyamidoamine; TNF = tumor necrosis factor
Dobrovolskaia & McNeil, Handbook of Immunological properties of engineered nanomaterials. WSP, 2013, ISBN 978-981-4390-25-5.

Immune system

Overall summary of effects on the immune system

Take home message

Take home messages

- Nanotechnology can benefit cancer therapy by improving formulation of traditional drugs (SM, biotechnology products and immunotherapeutics)
- Nanoparticles physicochemical properties determine particle toxicity
- Nanoparticles can be engineered to either specifically interact with or avoid the immune system
- Nanoparticle interaction with the components of the immune system can be desirable or undesirable
- Desirable interactions can benefit therapies of many disorders including cancer