Immune checkpoint Blockade

NCI CCR TRACO
Stephanie L. Goff, MD
September 14, 2016

Objectives

- The basics of immunotherapy
- Mechanism of action of checkpoint blockade
- Early clinical experience and the discovery of immune related adverse events
- Checkpoint blockade in melanoma
 - Ipilimumab
 - Nivolumab
 - Pembrolizumab
- Experimental Questions

Oncology

Cancer Immunotherapy

- 1. Nonspecific stimulation of immune reactions
 - a) Stimulate effector cells
 - b) Inhibit regulatory factors (checkpoint blockade)
- Active immunization to enhance anti-tumor reactions (<u>cancer vaccines</u>)
- Passively transfer activated immune cells with antitumor activity (adoptive immunotherapy)

Immune system

Cells of the Immune System

Nature Reviews | Cancer Dranoff 2004

Checkpoint blockade primarily affects T cells

T cell birth

T cell "birth"

Nature Reviews | Immunology

Germain 2002

Builds a repertoire of T cells

T cell activation

T cell activation

Nature Reviews | Immunology Heath 2001

- Signal 1: Specificity
- TCR engages antigen in context of MHC

T cell activation

Signal 2: Activation vs. Anergy

Chen 2013
Nature Reviews | Immunology

T cell activation

T cell activation

Nature Reviews | Immunology

Pollizzi 2014

- Signal 3: Polarization
- Dependent on cytokine profile of the microenvironment

The role of Signal 2 checkpoints

- Immune checkpoints promote self-tolerance
 - Initial response to antigen occurs primarily in secondary lymphoid organs (lymph nodes, tonsils, spleen, Peyer's patches, mucosa associated lymphoid tissue)
- Immune checkpoints limit "collateral damage"
 - Effector recognition in peripheral tissue/tumor
- For cancer immunotherapy, two opportunities to break tolerance to self-antigen

CTLA-4

CTLA-4

- Naïve and memory T cells express surface CD28
- CTLA-4 is transported to the surface in correlation to the strength of CD28 stimulation
- CTLA-4 also competes with higher affinity for CD80/86
- A dampening effect on downstream processing
- Constitutively present on Treg cells

PD-1

PD-1

- A primed T-cell is heading to peripheral tissue to engage a target, and once activated begin to express PD-1
- Inflammation present in the tissue can promote upregulation of the ligands of PD-1
- In general, this limits collateral damage during cellmediated destruction of infection

PD-1/PD-L1

PD-1/PD-L1 in cancer

Nature Reviews | Cancer

- Cancer cells can increase the amount of PDL1
- Successful T-cell tumor destruction can increase PDL1 through upregulation in response to IFNγ

Checkpoint Blockade

- Where to start?
- Tumors known to respond to other immunotherapy
- Melanoma
- Estimated 9,940 deaths/year in US
- Metastatic disease
 16% 5 yr survival
- Interleukin-2 durable cure in 4%

- Renal Cell Cancer
- Estimated 14,080 deaths/year in US
- Metastatic disease
 12% 5 yr survival
- Interleukin-2 durable cure in 7%

Checkpoint Blockade @ NCI

- αCTLA-4, ipilimumab
- Phase I trial
- mAb (3mg/kg) + peptide
- Enrolled 14 patients
- 2 complete responders
- 1 partial response
- Accrual stopped for toxicity
 - Dermatitis, colitis, hepatitis, hypophysitis

Phan GQ 2003

PNAS

Checkpoint Blockade @ NCI

- Cautiously proceeded with Phase II trials in melanoma and RCC, initially with dose reduction (3 → 1 mg/kg)
- Objective response was associated with development of autoimmune events

Melanoma, p=0.008

	> Gr 3 AE	< Gr 3 AE
Objective Response (CR = 2)	5 (36%)	2 (5%)
Non-responder	9	40

RCC, p=0.009

	> Gr 3 AE	< Gr 3 AE
Objective Response (CR = 0)	5 (29%)	O (0%)
Non- responder	12	23

Attia P 2005

Yang JC 2007

Checkpoint Blockade @ NCI

- Formal Phase II intrapatient dose escalation demonstrated association of response with immunerelated adverse events of any grade
- Enterocolitis was the most common grade 3/4 IRAE in patients with melanoma (18%) or RCC (28%)
- The administration of steroids to manage IRAE did not truncate responses

Melanoma, p=0.0004

	Gr 3/4 IRAE	Gr 1/2 IRAE	No IRAE
Objective Response (CR = 3)	14 (28%)	8 (22%)	1 (2%)
Non- responder	36	28	52

Checkpoint Blockade @ NCI

- Developed algorithms for management of IRAEs
- Demonstrated durability of responses
 - OR 13-20%
 - 5 yr OS 13-23%

Checkpoint blockade in melanoma

Drake C 2013

Ipilimumab

Ipilimumab for melanoma

- 11% response rate in Phase II trials at highest doses (10 mg/kg)
- Randomized Phase III ipilimumab
 ± gp100 vaccine vs. gp100 vaccine
- Allowed re-induction
- OR: ipilimumab arms 7% (38/540)
 CR in 3 patients
- Disease control rate 22%
- FDA approved for metastatic melanoma in March 2011

Hodi FS 2010

Ipilimumab

Ipilimumab for melanoma

- Updated survival
- 3 year OS, 20-26%
- "Tail of the curve"
 - Durable for a small # of patients

Nivolumab

Nivolumab

- αPD-1
- Phase I dose escalation
- 0.1 mg/kg → 10 mg/kg
 - Melanoma (26/94, 28%)
 - NSCLC (14/76, 18%)
 - RCC (9/33, 27%)
 - CRPC (0/13)
 - CRC (0/19)
- Grade 3/4 toxicities in 6%

Topalian SL 2010

Nivolumab for melanoma

Nivolumab for melanoma

- Ipilimumab-refractory
- RCT: nivolumab vs chemotherapy of choice (CheckMate 037)
- Objective Response
 - Nivolumab 38/120, 31.7% with 4 CR

FDA approval for refractory melanoma in December 2014

> Weber IS 2015 THE LANCET Oncology

Nivolumab for melanoma

Nivolumab for melanoma

- Untreated metastatic disease
- Wildtype BRAF
- RCT: nivolumab vs dacarbazine (CheckMate 066)
- Objective response
 - Nivolumab 84/210 (40%)CR in 16 pts (7.6%)
 - Dacarbazine 29/208 (14%)
 CR in 2 pts (1%)

Robert C 2015

Nivolumab for melanoma

Nivolumab for melanoma

- Updated survival
- "Tail of the curve"

Hodi F (presented at AACR 2016)

Pembrolizumab for melanoma

- Ipilimumab-refractory
- Phase I, dose comparison (2mg/kg vs 10 mg/kg)
- 157 evaluable patients with OR 41 (26%), CR in 2 pts
- Disease control rate 50%
- Grade 3/4 AE 12%

Robert C 2014 THE LANCET

Pembrolizumab for melanoma

- Ipilimumab-refractory
- Phase II, dose comparison (2mg/kg vs 10 mg/kg) vs chemo
- 540 patients
 - 2mg/kg ORR 38 (21%), 10 mg/kg ORR 46 (25%), chemo 8 (4%)
- Grade 3/4 AE 12%

Weber JS 2015

Pembrolizumab for melanoma

- RCT, KEYNOTE-006, first-line therapy
- Pembrolizumab (q2w, q3w) vs ipilimumab
- 1:1:1
- 834 patients
- Objective Response
 - Pembrolizumab q2w 94/279 (33.7%), CR 14
 - Pembrolizumab q3w 91/277 (32.9%), CR 17
 - Ipilimumab 33/278 (11.9%), CR 4

Pembrolizumab for melanoma

Grade ≥3 AE

- Pembrolizumab q2w 13.3% (1.4% Colitis)
- Pembrolizumab q3w 10.1% (2.5% Colitis)
- Ipilimumab 19.9% (7% Colitis)

Robert C 2015

The NEW ENGLAND
JOURNAL of MEDICINE

Pembrolizumab for melanoma

- Updated survival
- "Tail of the curve"

Checkpoint modulation

Checkpoint Modulation

Topalian, Cancer Cell 2015

- In melanoma, the two approved antibodies interfere with separate receptor/ligand complexes
- Could combination therapy improve response or survival?

Nivolumab/Ipilimumab

Nivolumab/Ipilimumab for melanoma

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1
- PD-L1 (+) ≥5%

Characteristic	Nivolumab (N = 316)	Nivolumab plus Ipilimumab (N=314)	Ipilimumab (N = 315)	Total (N = 945)
PD-L1 status — no. (%)				
Positive	80 (25.3)	68 (21.7)	75 (23.8)	223 (23.6)
Negative	208 (65.8)	210 (66.9)	202 (64.1)	620 (65.6)
Could not be determined or evaluated	28 (8.9)	36 (11.5)	38 (12.1)	102 (10.8)
BRAF status — no. (%)				
Mutation	100 (31.6)	101 (32.2)	97 (30.8)	298 (31.5)
No mutation	216 (68.4)	213 (67.8)	218 (69.2)	647 (68.5)

Nivolumab/Ipilmumab

Nivolumab/Ipilimumab for melanoma

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1
- Grade 3/4 AE
 - Nivolumab 16.3%
 - Ipilimumab 27.3%
 - Combo 55.0%

Variable	Nivolumab (N=316)	Nivolumab plus Ipilimumab (N = 314)	Ipilimumab (N=315)
Best overall response — no. (%)*			
Complete response	28 (8.9)	36 (11.5)	7 (2.2)
Partial response	110 (34.8)	145 (46.2)	53 (16.8)
Stable disease	34 (10.8)	41 (13.1)	69 (21.9)
Progressive disease	119 (37.7)	71 (22.6)	154 (48.9)
Could not be determined	25 (7.9)	21 (6.7)	32 (10.2)
Objective response†			
No. of patients with response	138	181	60
% of patients (95% CI)	43.7 (38.1-49.3)	57.6 (52.0-63.2)	19.0 (14.9–23.8)
Estimated odds ratio (95% CI)‡	3.40 (2.02–3.72)	6.11 (3.59–10.38)	
Two-sided P value	< 0.001	< 0.001	_
Time to objective response — mo			
Median	2.78	2.76	2.79
Range	2.3-12.5	1.1-11.6	2.5-12.4

 $[\]star$ The best overall response was assessed by the investigator according to the Response Evaluation Criteria in Solid Tumors, version 1.1.

‡ The comparison is with the ipilimumab group.

The NEW ENGLAND
JOURNAL of MEDICINE

[†] Data included patients with a complete response and those with a partial response. The calculation of the confidence interval was based on the Clopper–Pearson method. These analyses were conducted with the use of a two-sided Cochran–Mantel–Haenszel test stratified according to PD-L1 status, BRAF mutation status, and metastasis stage.

Nivolumab/Ipilimumab

Nivolumab/Ipilimumab for melanoma

	Nivolumab	Nivolumab + Ipilimumab	Ipilimumab	Total
Overall ORR	43.7%	57.6%	19.0%	40.1%
PD-L1 (+)	46/80	49/68	16/75	111/223
	57.5%	72.1%	21.3%	49.8%
PD-L1 (-)	86/208	115/210	36/202	237/620
	41.3%	54.8%	17.8%	38.2%
PD-L1	6/28	17/36	8/38	31/102
unknown	21.4%	47.2%	21.1%	30.3%

Nivolumab/ipilimumab

Nivolumab/Ipilimumab for melanoma -updated results-

- Minimum follow-up of 18 months
- Overall survival not updated, still immature

FDA approval of combination for melanoma in January 2016

> Wolchok (presented at ASCO 2016)

Melanoma

Why melanoma?

Highly mutated tumors

- Non-small cell lung cancer
- ~158,040 deaths/year in US
- Regional disease
 16% 5 yr survival
- Metastatic disease2% 5 yr survival
- Correlation between smoking and # mutations

- Tumors with mismatch repair (MMR) deficiency
 - Lynch syndrome (germline mutation)
 - Sporadic mutation
 - MSH2, MLH1, MSH6, PMS2
- Bladder cancer
 - 16,000 deaths/year in US
 - Highly lethal once metastatic

Nivolumab for NSCLC

Nivolumab for NSCLC

- NSCLC refractory to ≥ 2 treatments
- Phase II (CheckMate 063)
- 3 mg/kg q2w until progression or toxicity
- 117 patients treated
- Objective Response 17 (14.5%), no CR

Nivolumab for NSCLC

Nivolumab for NSCLC

- RCT
- Nivolumab vs docetaxel
- Refractory to one platinum-based regimen
- Objective Response
 - Nivolumab 27/135 (20%)
 - Docetaxel 12/137 (9%)

FDA approval for refractory NSCLC in March 2015

Brahmer 2015

Nivolumab for NSCLC

Nivolumab for NSCLC

- Nivolumab vs docetaxel
- Objective Response
 - Nivolumab 56/292 (19%)
 - Docetaxel 36/290 (12%)

FDA approval for refractory non-squamous NSCLC in October 2015

Borghaei 2015

Pembrolizumab for NSCLC

Pembrolizumab for NSCLC

- 495 patients, subset of KEYNOTE 001
- Wide range of inclusion criteria
 - 94 treatment naïve patients
 - 126 never smokers
 - 401 nonsquamous
- Majority at 10 mg/kg either q2w or q3w
- Objective response 96/495 (19.4%)
 - Never smokers 13/126 (10.3%)
 - Former/current 83/369 (22.5%)
- Grade ≥3 AE
 - Dyspnea 3.8%
 - Pneumonitis 1.8% including a fatality

FDA decision to be made October 2, 2015

Garon EB 2015

antiPD-L1

αPD-L1 in Urothelial bladder cancer

- MPDL3280A
- Atezolizumab
- 15 mg/kg q3w
- 27% tumors with >5% PD-L1 by IHC
- 65 patients with pretreatment biopsy
- Objective Response
 - $\ge 5\% \text{ PD-L1 } 13/30 (43.3\%)$
 - < 5% PD-L1 4/35 (11.4%)
- Grade 3/4 AE 4%

FDA approval for urothelial cancer in May 2016

Utothelial Cancer

Pembrolizumab in Urothelial Cancer

- Part of KEYNOTE-012
- Required ≥ 1% PD-L1 staining (61/95, 64.2%)
- 10 mg/kg q2w
- 33 patients (29 eval)
- OR 27.6%,
 CR 10.3% (3 pts)
- Grade ≥ 3 AE 15%

Abstract: Plimack E 2015

MMR-deficient cancer

Pembrolizumab for MMR-deficient cancer

- Builds on hypothesis of neoantigens from somatic mutations
- Phase 2 study
- Three parallel cohorts
 - MMR-proficient CRC
 - MMR-deficient CRC
 - MMR-deficient other

Tumor-stromal interface

Pembrolizumab at the tumor-stroma interface

Checkpoint blockade

Checkpoint Blockade

- Highly mutated tumors Use in other tumors?
 - Melanoma
 - Non-small cell lung cancer
 - Bladder cancer
 - Tumors with mismatch repair deficiency

- - Renal cell
 - Responds to other immunotherapy
 - Hodgkin's lymphoma
 - · Reed-Sternberg cells have elevated amounts of PD-L1
 - Head and neck SCC
 - HPV and mutations

Renal cell cancer

Nivolumab for renal cell cancer

- Nivolumab vs everolimus
- Objective Response
 - Nivolumab 103/410 (25%)
 - Everolimus 22/411 (5%)
- Median Survival
 - Nivolumab 25.0 months
 - Everolimus 19.6 months

FDA approval for renal cell carcinoma in November 2015

Hodgkin's lymphoma

Nivolumab for Hodgkin's Lymphoma

- 80 patients
 - Refractory to stem cell transplant
 - Refractory to brentuximab

- Objective Response
 - 53/80 (66%)
 - 7 complete remission

FDA approval for refractory cHL in May 2016

Younes A 2016

Head and Neck SCC

Pembrolizumab in Head and Neck SCC

- Part of KEYNOTE-012
- No requirement for PD-L1 expression
- 200mg q3w
- 192 patients, HPV+ 45/192 (23%)

Best Overall Response	Total N = 192 [†]			HPV+ n = 45‡			HPV- n = 147‡		
	n	%	95% CI	n	%	95% CI	n	%	95% CI
ORR	34	18	13–24	11	24	13-40	23	16	10–23
CR	8	4	-	4	9	93 55	4	3	-
PR	26	14	-	7	16	· - -	19	13	3 -
SD	33	17	2 - 2	7	16	S. .	26	18	1
PD	93	48	8 - 8	19	42	_	74	50	
NAS	32	17	-	8	18	-	24	16	-

Pembrolizumab

Pembrolizumab in Head and Neck SCC

FDA approval for recurrent or metastatic head and neck squamous carcinoma in August 2016

PD-1/PD-L1 pathway

Blocking the PD-1/PD-L1 pathway

	Drug	Melanoma	NSCLC	RCC	Bladder
Anti-PD-1	Nivolumab	32% (n=107)	17% (n=129) 30% (n=20)	29% (n=34) 21% (n=168)	NR
	Pembrolizumab	38% (n=135) 26% (n=157)	26% (n=42) 20% (n=194)	NR	24% (n=29)
Anti-PD-L1	BMS-936559	17% (n=52)	10% (n=49)	12% (n=17)	NR
	MEDI4736	NR	16% (n=58)	NR	NR
	Atezolizumab	30% (n=43)	23% (n=53)	14% (n=56)	26% (n=65)

FDA Approved (As of 9/2016)

Oncology

Pembrolizumab in Breast Cancer

- Part of KEYNOTE 012
- Triple Negative BC
- PD-L1 (+) on IHC (65/111, 59%)
- 10mg/kg q2w
- 32 patients (27 evaluable)
- OR 18.5%, CR 3.7% (1 pt)
- Grade ≥ 3 AE 9.4%

- TNBC
- PD-L1 (+) on IHC
 (20/105, 19%)

Pembrolizumab in Gastric Cancer

- Part of KEYNOTE-012
- Required ≥ 1% PD-L1 staining (65/162, 40%)
- 10 mg/kg q2w
- 39 patients
- OR 22%
- Grade ≥ 3 AE 10%

Anti-PD-L1in

αPD-L1 in melanoma

- MPDL3280A
- Estimated prevalence of PD-L1 staining 40%
- Immune-related Grade 3/4 AE in 2 patients (5%)

Trimelimumab

Tremelimumab

- αCTLA-4
- 10% response rate in Phase II trials
- Randomized Phase III tremelimumab vs. dacarbazine/temozolomide
- No cross-over
- Failed to demonstrate survival advantage
- Currently being studied in combination trials

Checkpoint pipeline

Checkpoint Pipeline

Target	Biological function	Antibody or Ig fusion protein	State of clinical development*	
CTLA4 I	Inhibitory receptor	Ipilimumab	FDA approved for melanoma, Phase II and Phase III trials ongoing for multiple cancers	
		Tremelimumab	Previously tested in a Phase III trial of patients with melanoma; not currently active	
PD1	Inhibitory receptor	MDX-1106 (also known as BMS-936558)	Phase I/II trials in patients with melanoma and renal and lung cancers	
		MK3475	Phase I trial in multiple cancers	
		CT-011‡	Phase I trial in multiple cancers	
		AMP-224 ⁵	Phase I trial in multiple cancers	
PDL1 L	Ligand for PD1	MDX-1105	Phase I trial in multiple cancers	
		Multiple mAbs	Phase I trials planned for 2012	
LAG3	Inhibitory receptor	IMP321 ^{II}	Phase III trial in breast cancer	
		Multiple mAbs	Preclinical development	
B7-H3	Inhibitory ligand	MGA271	Phase I trial in multiple cancers	
B7-H4	Inhibitory ligand		Preclinical development	
TIM3	Inhibitory receptor		Preclinical development	

CTLA4. cytotoxic T-lymphocyte-associated antigen 4; FDA, US Food and Drug Administration: Ig, immunoglobulin: LAG3, lymphocyte activation gene 3; mAbs. monoclonal antibodies; PD1, programmed cell death protein 1; PDL, PD1 ligand; TIM3, T cell membrane protein 3. *As of January 2012. *PD1 specificity not validated in any published material. *PDLZ-Ig fusion protein. *LAG3-Ig fusion protein.*

Checkpoint modulation

Checkpoint Modulation

Questions?