Genomics and Pediatric Cancers

The application of genomics to identify diagnostic biomarkers, drivers and therapeutic targets for pediatric cancers

> Jun S. Wei, Ph.D. Oncogenomics Section Genetics Branch Center for Cancer Research National Cancer Institute

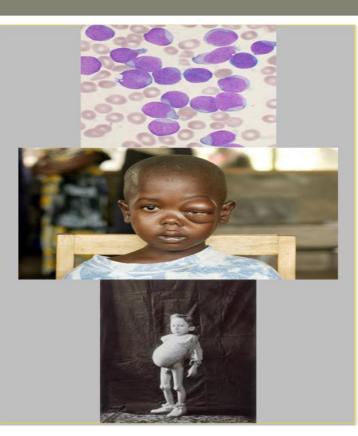
> > *TRACO* October 31, 2016

Outline

Outline

- Success and Challenges of Treating Pediatric Cancers
- Genomics
- Next-generation Sequencing
- Application of next-generation sequencing:
 - Diagnosis
 - Identification of molecular target
- Precision Therapy

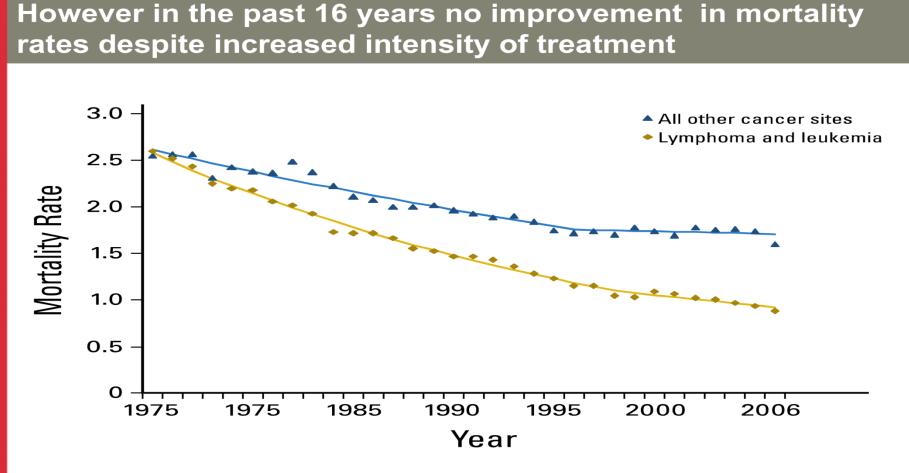
Childhood cancer


National Cancer Institute

100 90 80 70 60 Survival 50 40 30 20 10 0 Leukemia Lymphoma Wilms 1960s

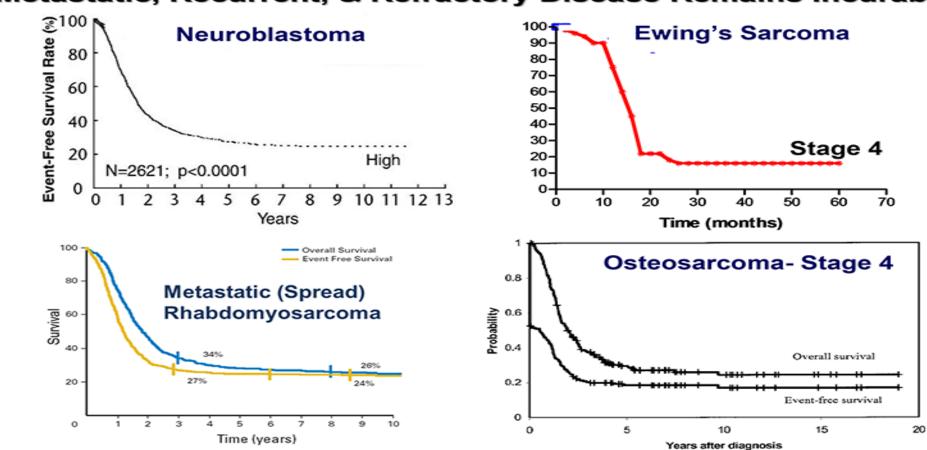
medical success story

Childhood cancer: The beginning of a modern


1990s

Courtesy: John Maris

Mortality rates


National Cancer Institute

Courtesy: Malcolm Smith

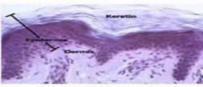
Pediatric cancers

Metastatic, Recurrent, & Refractory Disease Remains Incurable

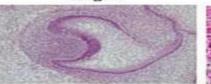
Gene expression

The dramatic consequences of gene expression in biology

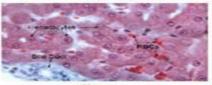
Anise swallowtail, Papilio zelicaon


Same genome → Different expression pattern Different proteome Different tissues Different physiology

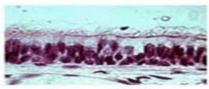
Gene expression

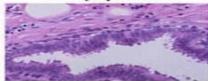

...but the complexity and diversi

Same genome or DNA → •Different expression pattern •Different proteome •Different tissues •Different physiology

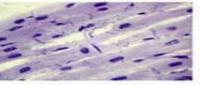

tongue

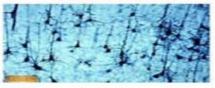
developing tooth

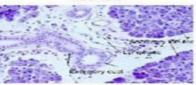

developing bone



intestinal crypt


follicle

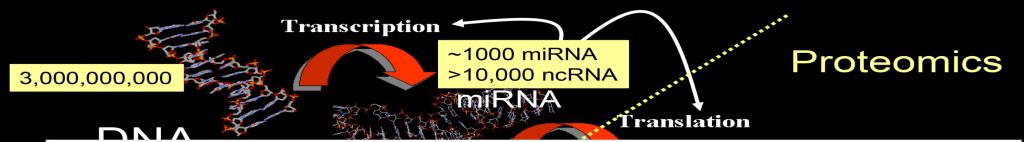

airway epithelium


mammary gland

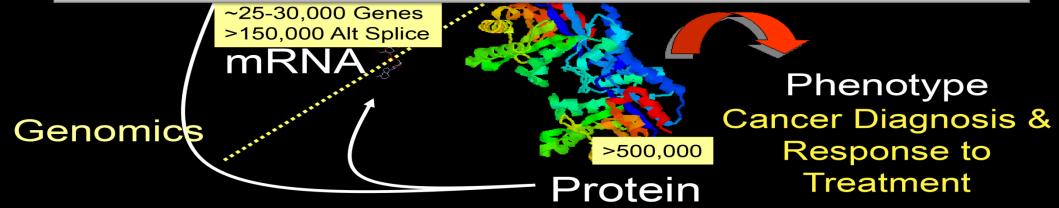
skeletal muscle

neuron

paroid gland



pancreas


bone (high mag)

Gene expression

Biology is driven by the simultaneous expression of large numbers of genes acting in concert

80% of the Genome is Functional

Human genome

aante

BRF-18

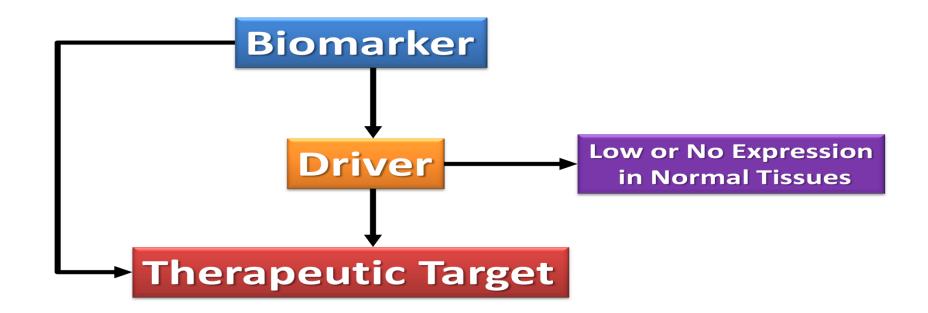
enome

Nuclear fission Five-dimensional energylandscapes Seafloor spreading The view from under the Arcticice

February 2001

Career prospects Sequence creates new opportunities THE HUMAN GENOME

Scie


Vol. 291 No. 5507 Pages 1145-1434 \$9

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

naturejobs genomics special

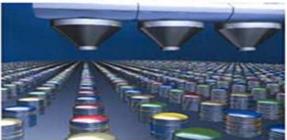
Genomic research

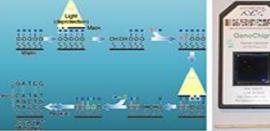
Genomic Research – identification of biomarker, driver, and target

Gene measurement

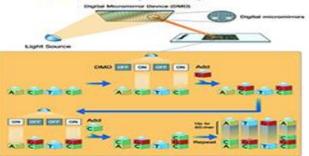
Challenge: how to measure/detect genes and their products in a massively parallel way?

- High-throughput technologies
- Computational power

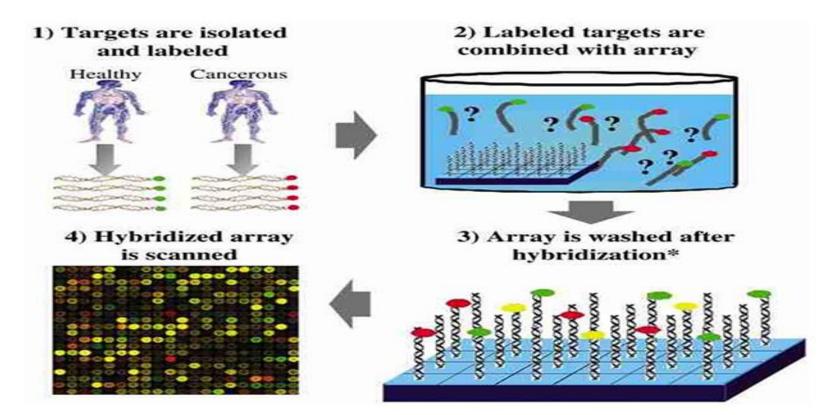

First generation tools 1st generation genomic tool: microarrays


Mechanical

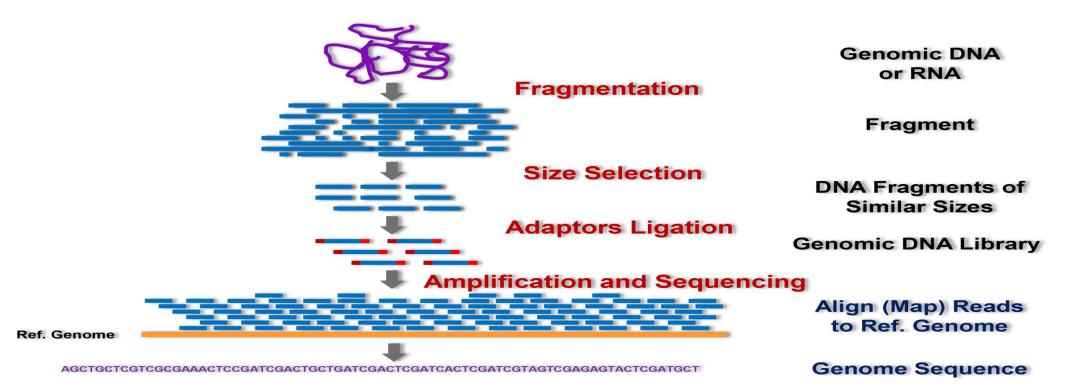
Electronic Piezo



Lithographic masks and de-protection through illumination


Digital micromirrow device (DMD)

- producted also protecting group


Microarrays

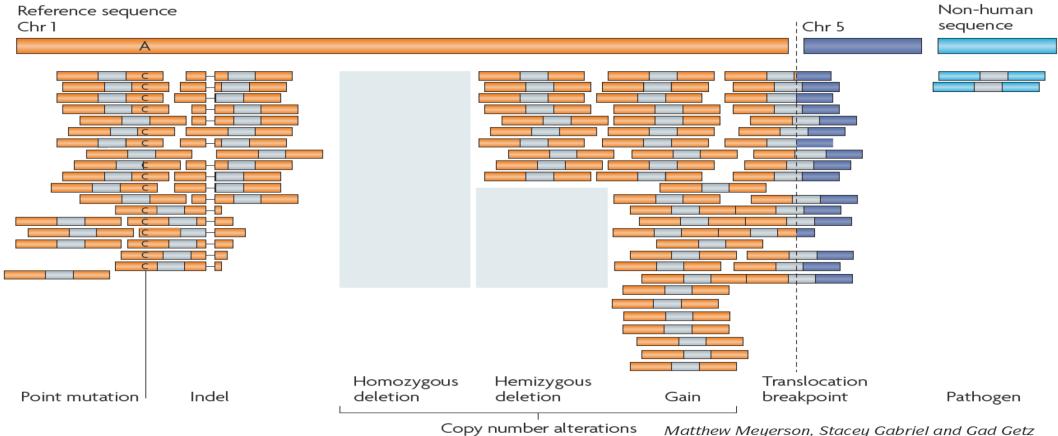
Microarrays – technologies of hybridization

Next-generation sequencing

Next-Generation Sequencing

Massively Parallel Sequencing

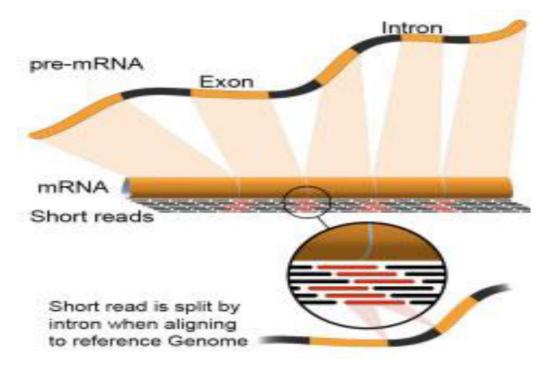
illumina


Massively Parallel Sequencing

001 1_11101_G 1382 2259		
and the second		
	and the second second second	
	للباد	

Each spot = one Sanger sequencing
Hundred of millions spot in a flow cell

Genomic Alterations

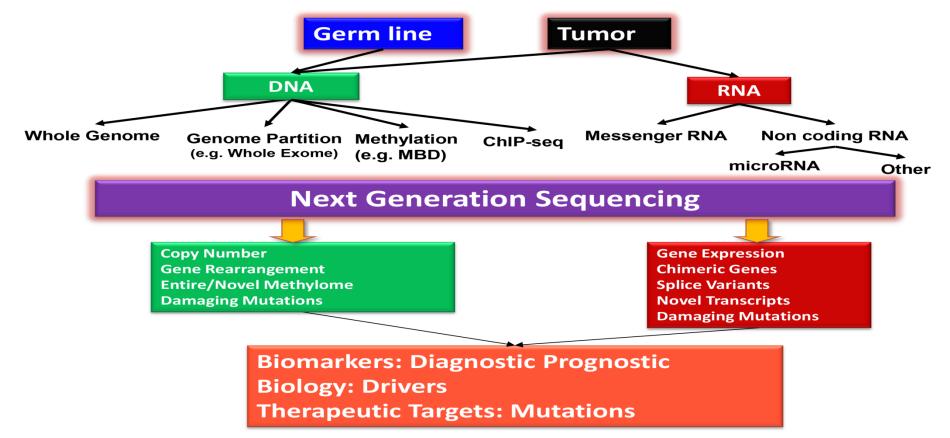

Genomic alterations detected by DNA sequencing

NATURE REVIEWS | GENETICS VOLUME 11 | OCTOBER 2010

Genomic Alterations

Genomic Alterations Detected by RNA Transcriptome Sequencing

- Digital Gene Expression
- Expressed Mutations
- Alternative Splicing Events
- Expressed Fusion Transcripts
- RNA editing
- Novel Transcripts
- Non-coding RNAs


Properties

Properties of the next-generation sequencing technologies

- No need to prepare clones for DNA fragments
- No need of prior knowledge for probe design
- Able to detect balanced genome structure changes
- Parallel sequencing at basepair resolution massive-throughput (up to 100s Gb/run)
- Cheaper (per nucleotide) and faster per genome

Cancer Genomes

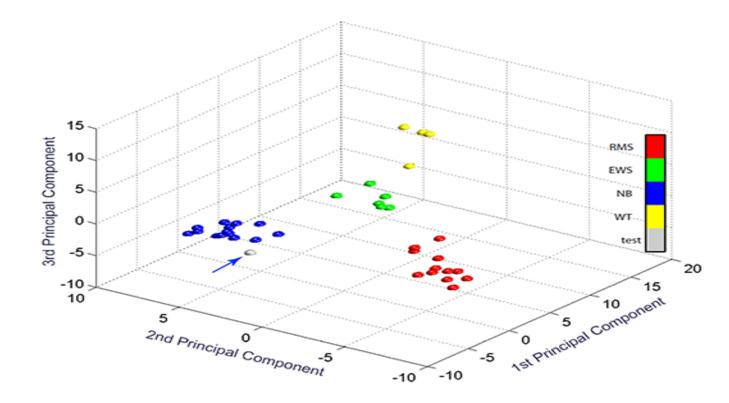
Next Generation Sequencing Allows for Comprehensive Analysis of Cancer Genomes on the Same Platform

Clinical Vignette

Clinical Vignette Use of Diagnostic Assay

- 4.5 year old female 2nd opinion from POB, NCI from Germany with questionable Diagnosis
- 6-week history of weight loss, reduced appetite, fever, abdominal pain
- On examination left sided abdominal mass

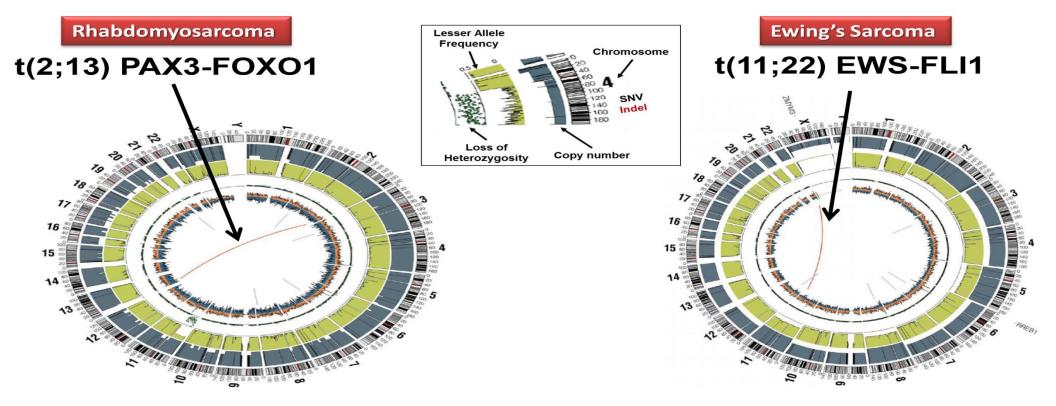
Wilms tumor


MRI: 9 x 8 x 9 cm mass in upper pole left kidney, tumor in Left renal vein and inferior vena cava



Cancer diagnosis

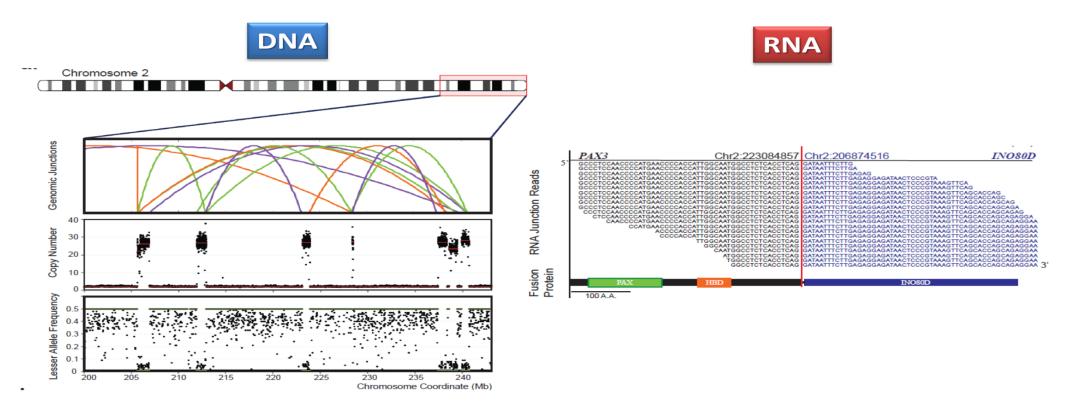
Diagnosis of cancers using gene expression profiles



 Patient was switched to high risk neuroblastoma treatment included stem cell transplant
 Doing well 1 yr after diagnosis

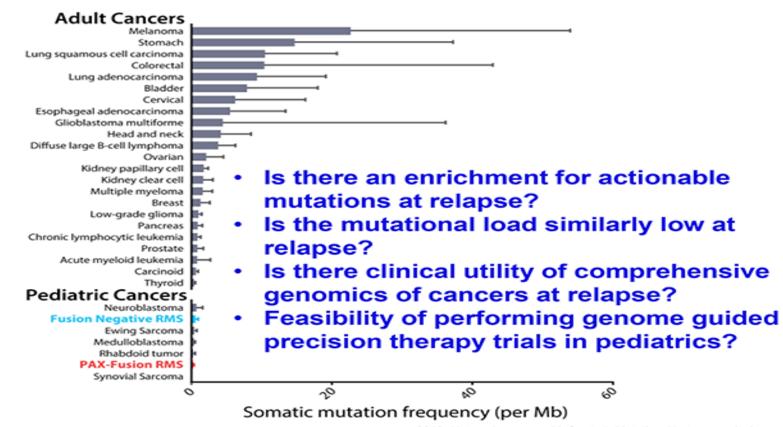
Diagnosis

Diagnosis of fusion positive pediatric tumors using whole genome sequencing


Shern et al., Cancer Discovery 2014, 4(2):216-31

Brohl et al., PLOS Genetics 2014, 10(7):e1004629

Rearrangement


Novel in-frame PAX3-INO80D fusion with massive 2q rearrangement in RMS,

Expression fusion gene verified by RNAseq

Pediatric cancer mutations

Pediatric cancers have a low number of somatic and actionable mutations <u>at initial diagnosis</u>

2014, Cancer Discovery, Shern, J. F. et al., Comprehensive Genomic Analysis of Rhabdomyosarcoma 2013, Nature, Lawrence, M. S. et al., Mutational heterogeneity in cancer

Clinomics for precision medicine

Personalized Medicine and Imaging

Clinical Cancer Research

MultiDimensional ClinOmics for Precision Therapy of Children and Adolescent Young Adults with Relapsed and Refractory Cancer: A Report from the Center for Cancer Research B

Wendy Chang^{1,2,3}, Andrew S. Brohl^{1,4}, Rajesh Patidar¹, Sivasish Sindiri¹, Jack F. Shern^{1,2}, Jun S. Wei¹, Young K. Song¹, Marielle E. Yohe^{1,2}, Berkley Gryder¹, Shile Zhang¹, Kathleen A. Calzone⁵, Nityashree Shivaprasad¹, Xinyu Wen¹, Thomas C. Badgett^{1,6}, Markku Miettinen⁷, Kip R. Hartman^{8,9}, James C. League-Pascual^{2,8}, Toby N. Trahair¹⁰, Brigitte C. Widemann², Melinda S. Merchant², Rosandra N. Kaplan², Jimmy C. Lin¹, and Javed Khan¹

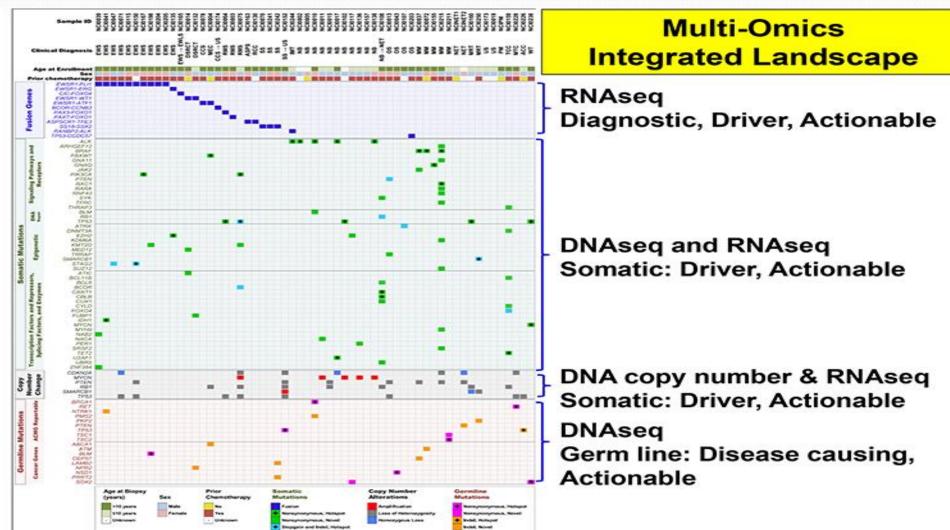
Clin Cancer Res. May 2016

Protocol Number: 10-C-0086

<u>Title:</u> "Comprehensive Omics Analysis of Pediatric Solid Tumors and Establishment of a Repository for Related Biological Studies" or Omics protocol

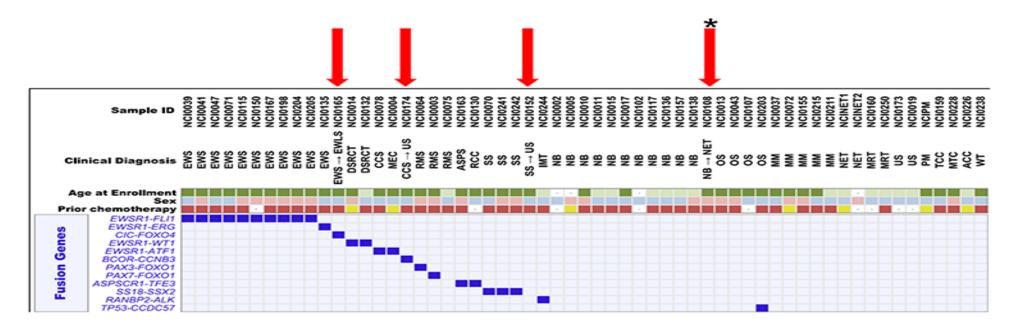
Study design

Study Design

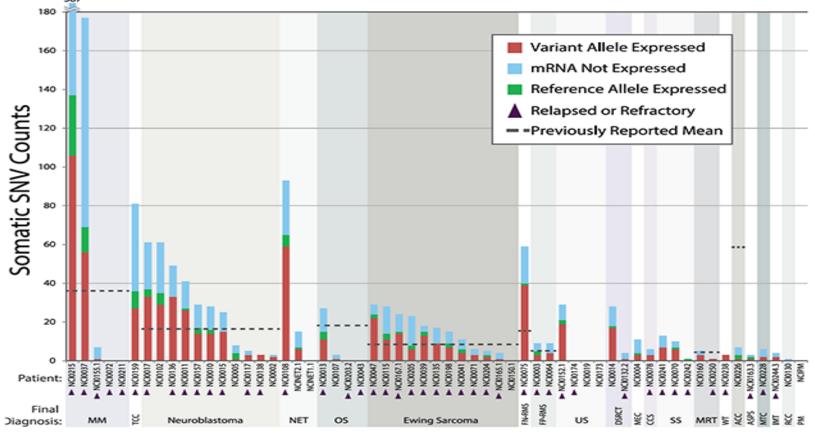

- Pilot study to determine the utility and feasibility of performing comprehensive genomic analyses to identify <u>clinically actionable mutations</u> in pediatric and young adult patients with metastatic, refractory or relapsed solid tumors
- 59 patients enrolled to the pediatric oncology branch, Center for Cancer Research (CCR), NCI (2010-2014)
- Age 7 months-25 years
- 20 diagnostic categories (non-CNS, solid tumors)
- Comprehensive multi-omics exome germline & tumor, RNAseq tumor & Illumina Omni SNP arrays of tumor

Mutations

Definitions: Actionable


- Actionable germline mutation: loss of function mutation or known hotspot activating mutation of a cancer consensus gene or pathogenic or likely pathogenic mutation of an American College of Medical Genetics (ACMG) Gene
- Actionable somatic mutation: genomic alterations that changes the patient's diagnosis, or may be targeted with FDA approved drugs or in the context of existing clinical trials according to the NCI-adult MATCH-Criteria

Multi-omics integrated landscape


Fusion genes

Presence or absence of fusion genes and/or expression profiles confirms diagnosis or leads to revision of diagnosis

Somatic mutations

Somatic mutation burden at relapse increases 2-3X Not all somatic SNVs are expressed in mRNA

Chang et al. Clin Cancer Res. 2016 Mar 18. pii: clincanres.2717.2015.

Match criteria

NCI-Adult MATCH

Criteria for Matching Mutation to Drug

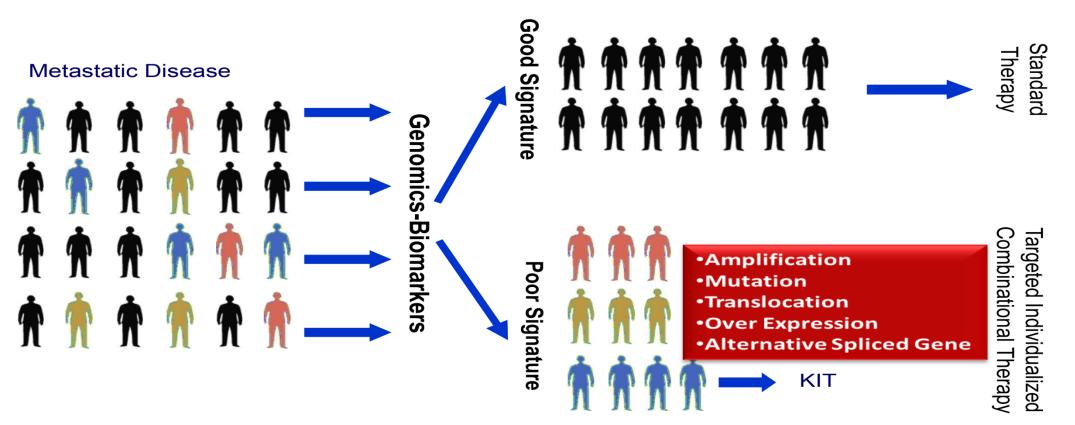
Level 1	Gene variant approved for selection of an approved drug (BRAF V600E and vermurafenib). The variant will be Level 1 in all tissues open to treatment with the approved drug.
Level 2a	Gene variant is an eligibility criteria for an ongoing clinical trial for that treatment.
Level 2b	Gene variant has been identified in an N of 1 responses (TSC1 and everolimus) for that treatment
Level 3	 Preclinical inferential data (<i>in vivo</i> and <i>in vitro</i> models) that provide biological evidence sufficient to support the use of a variant for treatment selection, e.g. Models with variants respond to treatment and models without variant do not respond to treatment Gain of function mutations demonstrated in pre-clinical model, e.g. D769H variant of ERBB2 results in increased tyrosine kinase-specific activity and up regulates pathway signaling (does not require treatment evidence) Loss of function genes, tumor suppressor or pathway inhibitor (e.g. NF1) any variant that produces a stop codon including frameshift or demonstrated loss of function in pre-clinical model (does not require treatment evidence)

Tumor mutations

Approximately 50% of Pediatric and Adolescent Young Adults with Cancers have Actionable Tumor Mutations

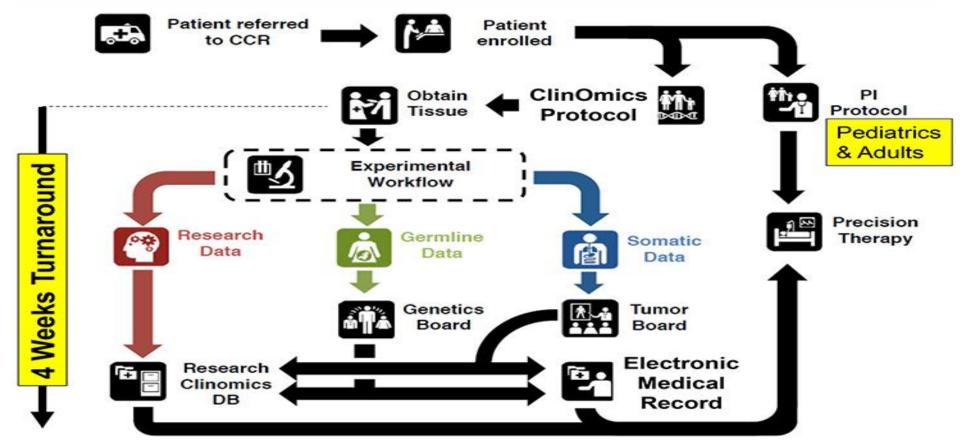
Samplo	Diagnosis	Gene	Stage	Modality	AA Change	Level	Drug	Clinical Trial: Pediatric	FDA Approval in Adults	Exact Mutation vs. Hotspot	Sample	Diagnosis	Gene	Stage	Modality	AA Change	Level	0mg	Clinical Trial: Pediatric	FDA Approval in Adults	Exact Mutation vs. Hotsoot
NCI0041	EWS	IDH1	Relapsed	WESWTS	p.R132C	20	IDH1 inhibitors	No	No	Exact	NCi0011	NB	MYCN	Relapsed	SNP Array/WTS	Amplification	з	inhibitors	No	No	+
NCI0167	EWS	PIK3CA	Refractory	WESWTS	p.D1017G	2.0	PI3K/AKT/ mTOR inhibitors	Yes	Yes	Exect	NCI0102	NB	MYCN	- Ca	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	- 93
NC80071	EWS	CDKN2A	Relapsed	ShiP Array/WTS	Homozygous loss	3	CCK4/6 inhibitor	No	No	- 82 - J	NCI0136	NB	MYCN	Relapsed	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	
NC80047	EWS	STAG2	Relapsed	WESWTS	p.E984X	3	PARP inhibitors	Yes	No	- 22	NCI0138	NB	MYCN	Relapsed	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	- 20
NCI0150	EWS	STAG2	-	WESWTS	p.R216X	3	PARP inhibitors	Yes	No	Hotspot	NCINET2	NET	PTEN	-	WESWIS	p.R14ts	20	PI3K/AKTImTOR	Yes	No	- /
NC80244	INT	ALK	Relapsed	WTS	RANBP2-ALK fusion	28	Crizotnib	No	Yes	Exect	NCINET2	NET	COKNZA	-	SNP Array/WTS	Homozygous loss	3	CDK4/6 inhibitor	No	No	
NC80244	IMT	ALK	Relapsed	WESWIS	p.11171T	23	Centraib	No	Yes	Exact	NCI0013	os	PTEN	Relapsed	WESWITS	p.K80fs	24	PER/AKTINTOR	Yes	No	
NC80037	1414	BRAF	Relapsed	WESWTS	p.V600E	1	Vemurafenib, Dabrafenib	Yes	Yes	Exect	NCI0075	RMS	FIK3CA	Relapsed	WESWITS	p.P104Q	20	PI3K/AKT/ mTOR inhibitors	Yes	Yes	Exact
NC80072	MM	BRAF	Diagnostic	WESW7S	p.V600E	1	Vemurafenib, Dabrafenib	Yes	Yes	Exect	NCI0075	RMS	MYCN	Relapsed	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	
NC80215	1.014	BRAF	Relapsed	WESWTS	p.V600E	1	Vemurafenib, Dabrafenib	Yes	Yes	Exect	NC80238	WT	MYCN	Relapsed	WESWITS	p.P44L	3	bromodomain inhibitors	No	No	1.1
NCI0155		GNAQ	Relapsed	WES/W7S	p.Q209L	1	Temsirolimus, Trametnib, Vorinostat	No	Yes	Exact				1	NCI-Ac	dult MA	Т				
NC80215	ARA.	GNA11	Relapsed	WESWITS	p.5268F	28	Trametinib	No	Yes			0	itori	-					~	Druc	~
NC80211	1.01	TSC1	Relapsed	WESWTS	p.\$828R	3	Everolmus	No	Yes			4				ning Mu	_				
NCI0211	MM	TSC2	Relapsed	WESWITS	p.T245A	3	Everolimus	No	Yes		Level	1				in of an approve sues open to trea					afenib).
NCI0160	MRT	SMARCB1	10.000	SNP Array/WTS	Homozygous loss	3	EZH2 inhibitors	No	No	- (+)	Level	2a				for an ongoing				-	
NCK0250	MRT	SMARC81	Refractory	WESWIS	p.R40X	3	EZH2 inhibitors	No	No	-	Level	26	Gene vari		een identified in	n an N of 1 respo	ons	es (TSC1 and e	rveroli	mus) for	that
NC80228	MTC	RET	Relapsed	WESAVTS	p.M918T	23	Vandetanib	Yes	Yes	Exact			Preclinica	al inferenti		and in vitro mo			biolog	gical evid	ence
NC80002	NB	ALK		WESWIS	p.R1275Q	23	Crizotnib	Yes	Yos	Exact						riant for treatme and to treatment			ut vari	ant do no	e.
NC80010	NB	ALK	Relapsed	WESWITS	p.F1174V	20	Crizotinib	Yes	Yes	Exact	20.00			nd to treat		demonstrated in				07694	ariant of
	NB	ALK	Relapsed	WESWTS	p.F1174L	28	Crizotinib	Yes	Yes	Exect	Level	3	ERBE	32 results	in increased tyr	rosine kinase-sp	eci				
NC80017	-	ALK	Relapsed	WESWIS	p.Y1278S	20	Crizotinib	Yes	Yes	Exact						atment evidence nor suppressor		athway inhibito	r (e.g	NF1) an	y varian
NC80017 NC80138	NB	nen.													stop codon inc						

Germline mutations


~10% of Pediatric and Adolescent Young Adults with Cancers have Actionable Germline Mutations some Therapeutically

Sample	Diagnosis	Gene	Mutation	Disease	Hotspot	Notes	ACMG gene
NCI0072	мм	АТМ	p.Y380fs	Ataxia-Telangiectasia and Cancer Predisposition Syndrome	No	Frameshift Insertion of Tumor Suppressor Gene	Yes
NCI0010	NB	BRCA1	Q1313X	Hereditary Breast and Ovarian Cancer Syndrome	Yes	Pathogenic, Reportable	Yes
NCI0010	NB	PMS2	p.K356fs	Lynch Syndrome and Mismatch Repair Cancer Syndrome	No	Frameshift Deletion of Tumor Suppressor Gene	Yes
	NET	PTEN	p.R14fs	PTEN Hamartoma Tumor Syndrome	No	Frameshift Deletion of Tumor Suppressor Gene	Yes
	MTC	RET	M918T	Multiple Endocrine Neoplasia 2B	Yes	Pathogenic, Reportable	Yes
NCI0152	$\textbf{SS} \rightarrow \textbf{US}$	TP53	R175H	Li-Fraumeni Syndrome	Yes	Patient Tumor has LOH of Wild-Type TP53 on Other Allele	No
NCI0226	ACC	TP53	A159K	Li-Fraumeni Syndrome	Yes	Tumor has LOH of Wild-Type TP53 on Other Allele, Novel, 2 Base Non-Frameshift Substitution, c.358_359delGCinsTT	No
	мм	TSC1	p.S828R	Tuberous Sclerosis Type 1, Lymphangioleiomyomatosis, Focal Cortical Dysplasia, and Everolimus Sensitivity	No	Nonsynonymous SNV, Autosomal Dominant, Patient also has a Germline TSC2 Mutation	No
	мм	TSC2	p.T246A	Tuberous Sclerosis Type 2, and Lymphangioleiomyomatosis	Yes	Nonsynonymous SNV, Autosomal Dominant, Patient also has a Germline TSC1 Mutation	No

Summary Summary


- Demonstrated the importance and feasibility of performing multidimensional ClinOmics in the clinical setting in real time
- ~50% of children with pediatric or AYA patients with relapsed or refractory cancers have actionable somatic mutations
- ~ 10% have actionable germline mutations
- Importance of performing parallel germline sequencing; some therapeutically actionable (e.g. DNA repair, PTEN, TSC1, TSC2, HRAS, RET, ALK)
- Increased tumor burden in relapsed tumors; implications for immunotherapy
- Single agent pediatric MATCH like trials are planned by COG-NCI

Future Trials Genomics Enabling Precision Therapy-The Future for Pediatric Trials

ClinOmics program

CCR ClinOmics Program-CLIA

Operational goals

Operational Goals

Clinical Genomics Platform

- Enable precision therapy trials for patients with cancer-
- Panel & Exome for tumor and normal

Research Comprehensive Genomics

- RNAseq transcript ome analysis of tumor
- SNP arrays tumor, normal
- Methylation arrays tumor

Patient-derived Tumor Models

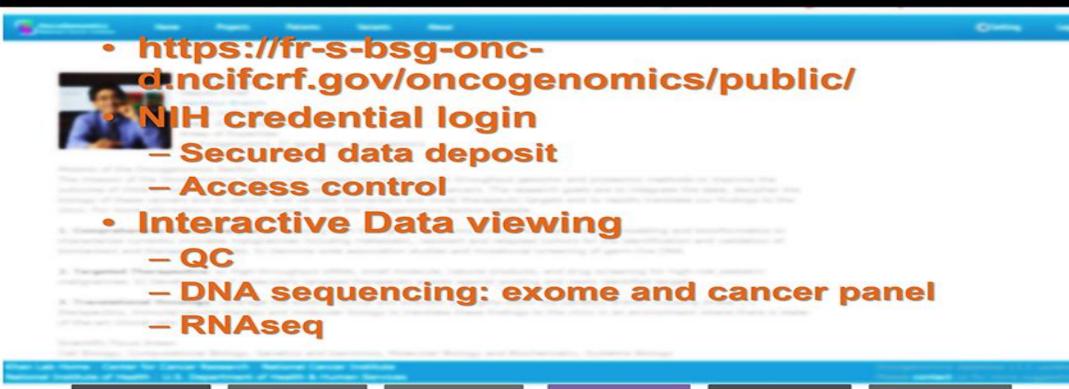
- PDX from tumor and blood
- Conditional reprogrammed cells from tumor, PDX
- Exome / RNAseq on models

Biobanking &Tissue Repository

- Tumor, germ line
- DNA, RNA
- Plasma, Serum, Urine, Circulating tumor cells, DNA, RNA

Exome vs. Panel

Exome vs. Panel (both CLIA)


- Exome-All Protein Coding Genes
 - Mutations in dominant clone
 - Novel driver mutations
 - Actionable secondary/incidental findings in germline in non-cancer genes

Panel- Cancer Genes

- Validates exome NGS results
- Deeper coverage allows subclone detection
- -Copy number changes and LOH
- -Fusion gene detection

Clinomica Wesite

ClinOmics Website for Data Presentation

QC report

QC Report: Sequencing Statistics & Genotyping

Run Statistics

-	and shares	QC

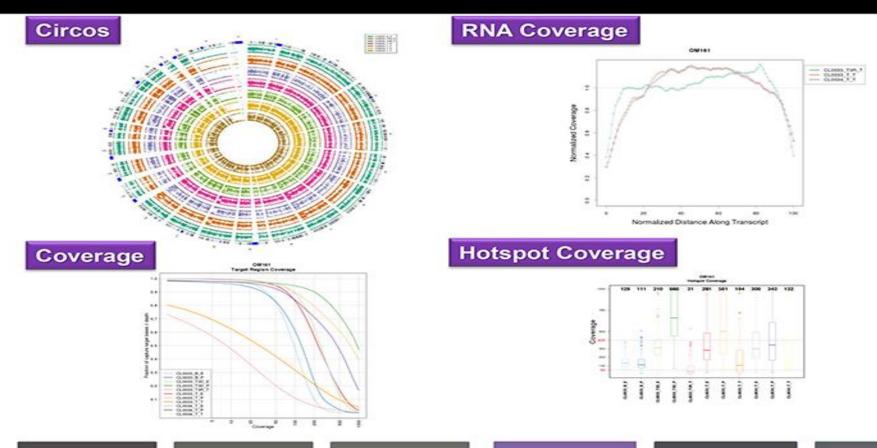
Circos Coverage Transcript Coverage Hotspot DNA QC RNA QC Genotyping

Show 15 + entries	Select Columns
-------------------	----------------

Sample_101	Annoted Bag	Present big senioper positions at 5x	Percent Ing unique positions at 10x	Precouting antique provident at 13x	Precent by writing positions at 20x	Precent by writing providence at 30%	Present by writing provident at Silv	Precent log unique positions at 100x	Precent by unique positions at 200x	MEAN BAIT COVERAGE		Outarget g	Prevant e	Unique contarget () reads	Processed and any offer contraryet		=
CL0033_T_P	98.94	97.50	97.08	96.71	96.35	95.58	93.68	87.48	75.91	709	758	33301602	44.54	25701887	77.18	0	59.23
0.0034_T_E	97.24	97.46	97.10	96.73	96.30	95.24	92.20	79.63	50.45	248	263	194065283	63.33	171540148	88.39	0	58.30
0.0034_T_P	98.92	97.30	96.73	96.20	95.64	94.33	91.19	81.83	68.37	464	496	19687910	59.58	16811999	85.39	0	59.21
3_8_60000	96.68	97.16	96.43	95.41	94.02	89.98	77.75	42.24	7.27	100	105	71811950	65.27	68733940	95.71	0	57.97
1.0033_8_P	98.67	96.39	95.33	94.12	92.81	89.47	81.07	58.09	19.87	137	143	5141314	58.65	4922738	95.75	0	59.04
3_OCT_CC00.0	96.75	97.47	97.18	96.87	96.53	95.72	93.39	82.58	50.80	232	245	190042530	66.15	160140987	84.27	0	58.01
4_OCT_CC00.0	98.69	97.38	97.08	96.83	96.62	96.22	95.43	93.21	86.68	732	763	37963486	59.30	26297292	69.27	0	59.07
3.0033_T_E	97.22	97.44	97.07	96.65	96.17	94.97	91.48	77.39	48.03	242	258	195690091	63.51	167866163	85.78	0	58.28
howing 1 to 8 o	(8 entries																Previo

Genotyping

Show 15 + entries	Select Columns									Search	
Sample *	CL00333_B_E = 0	0.0000_B_P\$	GL00333_130_E - \$	CL00333_T30_P = 0	CL00333_T3R_T #	0.0000_T_E #	CL0000_T_P 4	CL0033_T_T #	CL0034_T_E 0	0.0034_1_P 4	CL0034_T_T 0
CL0033_8_E	100%	97%	90%	91%	94%	90%	80%	94%	90%	94%	94%
CL0033_8_P	97%	100%	95%	92%	94%	96%	97%	94%	95%	58%	94%
CL0033_T30_E	98%	96%	100%	91%	94%	90%	87%	94%	98%	94%	95%
CL0033_T30_P	91%	97%	93%	100%	83%	90%	99%	90%	91%	97%	8775
CL0033_T3R_T	94%	91%	94%	89%	100%	94%	84%	95%	94%	90%	96%
CL0033_T_E	56%	55%	90%	50%	94%	100%	87%	94%	90%	93%	94%
CL0033_T_P	80%	97%	87%	96%	84%	87%	100%	85%	87%	97%	84%
CL0033_T_T	94%	94%	94%	90%	96%	94%	85%	100%	94%	92%	97%
CL0034_T_E	56%	35%	90%	91%	54%	90%	87%	94%	100%	93%	94%
0.0034_T_P	94%	98%	94%	97%	50%	93%	97%	92%	93%	100%	91%
CL0034_T_T	2476	24%	22%	82%	222	94%	84%	97%	94%	91%	100%


Showing 1 to 11 of 11 entries

Previous 11 Next

Search

QC report

QC Report: Coverage

Mutation view

Mutation View

	JANNA A	RAPPoed	Clene	fusion Exp	ression (
ldd filte	•	desire and												Status: a	ctive	Ce signou	ti dir/	ctionable	Mutation	ns: 117/1892
						10														
		Total Co		Min VA	F 0.25	е п	er 1	Tier 2 Tier 3	Tier 4 All											
bow 15	· entrie	s Select C	columnys.	-		_	_			_							_	Search	_	-
Details*	1048	Cohert 8	chrt	Start 0	End 4	Ref	AND	Gene 0	AAChange	٠	Hotspots®	Sep138(4	Max Postfict	Prediction \$	Clinvart	Conmic®	HGMDD	Reported	Constant)	Germanie (
0	100	1450 es	det	197070697	197070707	TTT	CTT	ASPH 1	c.7674_7684TGTAATACAAG											(172)
0	100	45 45%	chr1	144917829	144917829	A		PORADOP	V552fs			rs375854543		0						Circl
0		38.18%	«?w19	46274624	46274624	G		E-MPR	1570H				000	0		0		0		GRED
0	100	1 9.09%	chr8	37555989	37555989	G.	с	20#203	A524P					0						GRED
0	100	9.09%	che17	20135672	20135672	0	A	specci	D769N			W35835131	0.00	0				0		CERED
0	100	45 45%	chell.	68968166	68968171	00A	AGA_	HEX2	6.1195_1200AGAAAA					0						CERED
0	10	45.45%	chr1	144854597	144854598	TC	CT	PORADOP	c.6554_6555A0											(102)
0	100	27.27%	dr3	159995257	159995257	c	A	BTRO	VS09F					0						(Terz)
0	-	19.09%	chr12	59281583	59281583	c	T	1830.3	\$360N			++201642008		0						Cirrid
0	100	1 9.09%	chr3	142201353	142201353	с	0	ATE	x297N			192229033	000	0	0	0				(THE)
0	100	26.36%	0122	42524310	42524310	C	AC	C19206	A2375			/128371717	0.01	0		0				(1002)
0	100	19.09%	che16	57481454	57481454	a	Α.	0909	ALIT					0						CIERD
0	10	9.09%	chr16	1502857	1502064	000	T00	CUCN7	<.1245_125200A0G0CA											Citt
0	199	10.10%	chr21	47841933	47641941	TGA	CGA	PONT	<.7074_7082C0A09CT00											(Internet)
0	10		12119	35524939	35524944	CCA.	ACA_	SCNIE	6.744_749ACAAAC											Tiera

Khan Lab Home | Center for Cancer Research | National Cencer Institute National Institute of Health | U.S. Department of Health & Human Services

Oncogenomics detabase v3/0 updated Apr 17, 201 Please contect us for more supportions or question

Conclusions

Conclusions

- Integrated analysis of the cancer genome indentifies biologically relevant diagnostic, prognostic biomarkers and novel targets for therapy
- 2. Powerful emerging tools of next generation sequencing (including whole genome, exome, and transcriptome) will determine the complete genomic portrait of pediatric cancers at the base pair level
- This will lead to the identification of key drivers and will enable the development of future novel therapies and precision therapy

Acknowledgements

Acknowledgements

Oncogenomics Section Javed Khan

Biologists

- Young Song
- Jack Shern
- Hongling Liao
- Dominik Bogen*
- Samuel Li*
- Susan Yeh*
- Catherine Tolman*
- Adam Cheuk*
- Laura Hurd*

NHLBI

- James Taylor VI
- Krupa Desai
- Kushal Shah

Bioinformatics

- Rajesh Patidar
- Li Chen*
- Shile Zhang*
- Xinyu Wen
- Sivasish Sindiri
- Jianbin He*
- Jimmy Lin*
- •Jianjun Wang*
- Qingrong Chen*
- Peter Johansson*
- Andy Brohl*

Cell Growth Regulation Section National Institute of Dental and Craniofacial Research

- Silvio Gutkind,
- Jose Vaque (Chepe)
- Laboratory of Molecular Pharmacology,
- CCR, NCI
- Jean-Claude Marshall
 - Patricia Steeg
- Cancer Modeling Section, Lanoratory of Molecular Pharmacology, CCR, NCI
 - Yanlin Yu
 - Glen Melino