Small cell lung cancer

Haobin Chen, M.D., Ph.D.
Assistant Clinical Investigator
TOSB, NCI
haobin.chen@nih.gov

Outline

- Small cell lung cancer 101
- Genetic abnormalities of small cell lung cancer
- SCLC conversion as a resistance mechanism to EGFR TKI in lung adenocarcinoma
- Examples of translational medicine: Story of Rova-T
- Examples of translational medicine: Immune checkpoint inhibitors
- Extrapulmonary small cell carcinoma

Morphology of SCLC

Small cell lung cancer (SCLC) is also known as oat cell carcinoma. Its morphology resembles oat grains and appears as small oval cells with scanty cytoplasm.

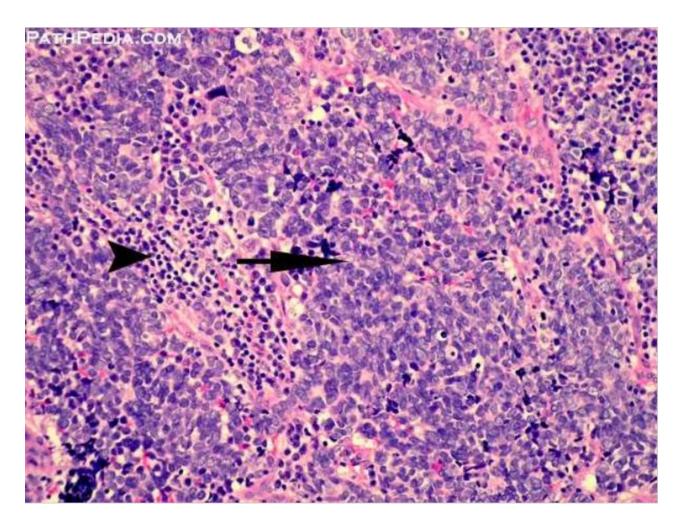


Image obtained from Pathpedia.com

SCLC 101

- Lung cancer is conventionally divided into small-cell lung cancer (SCLC) and non-small cell lung caner (NSCLC).
- SCLC accounts for 10% to 15% of all lung cancer cases, and is closely linked to the intensity and duration of tobacco smoking.
- Compared to NSCLC, SCLC tends to disseminate earlier in the course of its natural history and displays a more aggressive clinical behavior.
- SCLC is also commonly associated with paraneoplastic endocrinopathies, such as Cushing syndrome and Lambert-Eaton myasthenic syndrome.

SCLC is a recalcitrant cancer

Recalcitrant cancer:

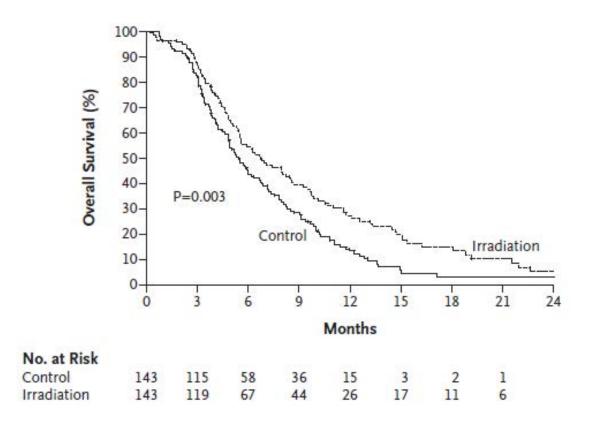
- Have a 5-year relative survival rate of less than 20%
- Estimated to cause the death of at least 30,000 individuals in the United States per year.
- NCI identified four major obstacles to progress in 2014:
 - Continuing risk of developing the disease that remains for decades after smoking cessation.
 - Most patients have widely metastatic tumors at the time of diagnosis.
 - Rapid development of resistance to chemotherapy in more than 95% of SCLC patients.
 - Lack of tumor tissue for clinical, molecular, and cell biological studies.

SCLC:

<7%

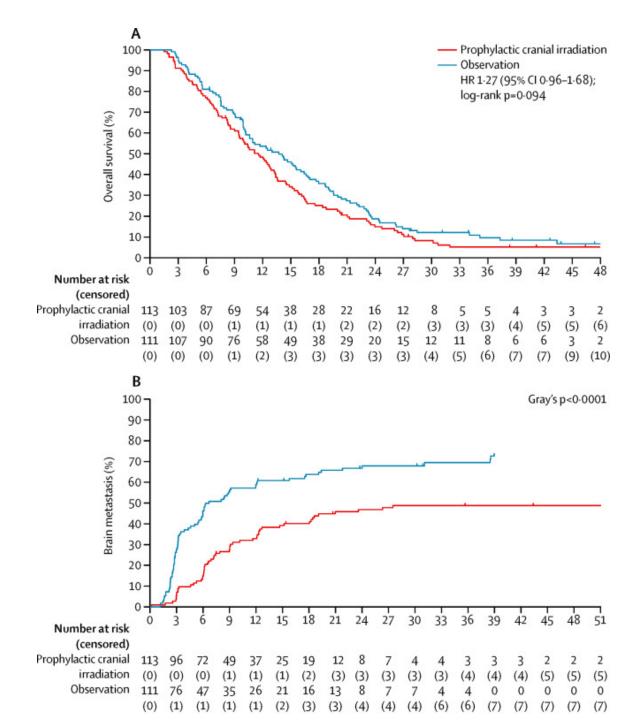
~30,000 deaths/yr

Staging of SCLC: 2-stage system


- Limited disease-SCLC (30-40%)
 - Definition: Tumor and nodes confined to one hemithorax and able to be encompassed within a single radiotherapy port
 - Treatment: Combination chemotherapy with thoracic radiation
 - Median Overall survival: 15-20 months
- Extensive disease-SCLC:
 - Definition: All others.
 - Treatment: Combinatory chemotherapy
 - Median Overall survival: 8-13 months

Systemic therapy of SCLC

- It was learned quite early in the 1970s that combinatory therapy produces superior survival compared with single-agent treatment based on several randomized trials.
- First-line therapy: platinum + etoposide
 - Sensitive disease: relapse after three months of the last day of initial treatment
 - Refractory disease: relapse within three months of the last day of initial treatment
- Second-line therapy: topotecan
- Third-line therapy: nivolumab

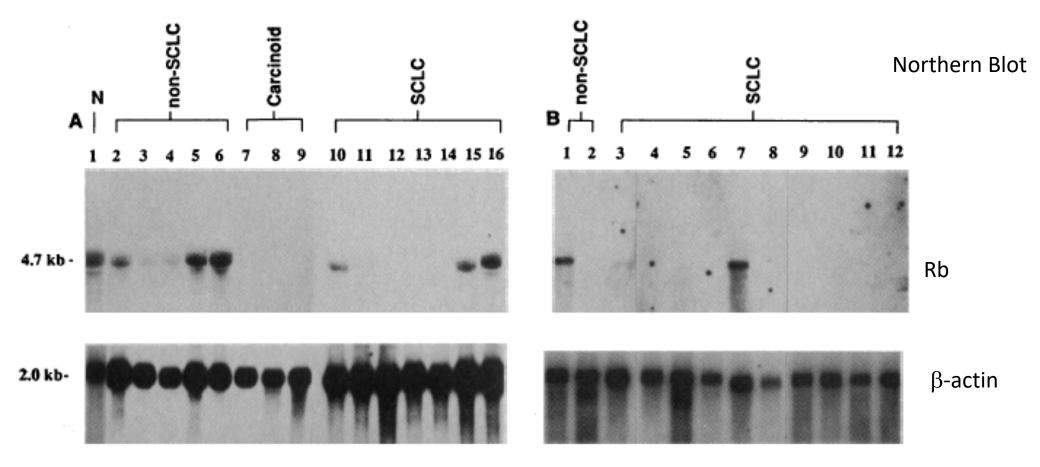

PCI (prophylactic cranial irradiation)

- 1. SCLC commonly metastasizes to brain.
- 2. In 1990s, meta-analysis shows that PCI improves overall survival in SCLC patients with complete remission from initial therapy.
- 3. In 2007, PCI was proved to decrease brain metastasis, and improve PFS and OS in extensive-disease SCLC patients with a response after initial chemotherapy.

PCI (cont.)

In a recent Japanese trial, PCI did not result in longer overall survival compared with observation in patients with extensive-disease small-cell lung cancer, who had any response to platinum-based doublet chemotherapy and no brain metastases on MRI.

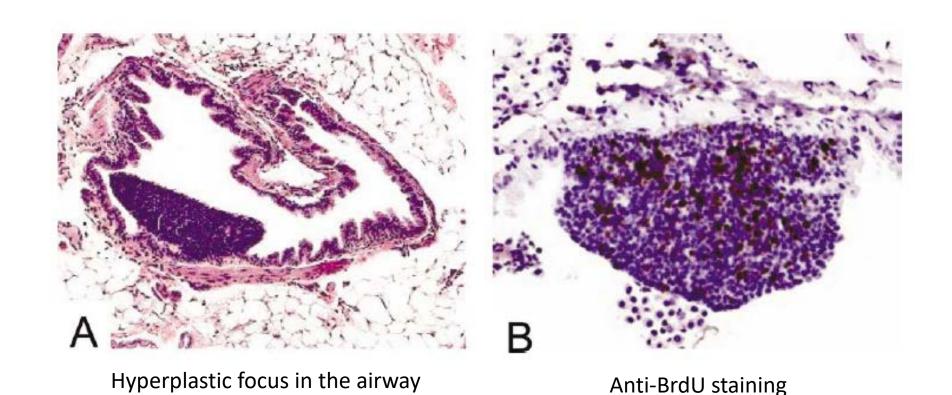
Genetic abnormalities of SCLC


Genetic abnormalities of SCLC- Deletion of 3p21

- Chromosomal region 3p21 was found to be consistently deleted not only in SCLC (almost 100%), but in all major types of lung cancer (more than 90%).
- Chromosome 3p abnormalities appear early in the pathogenesis of lung cancer and are found as clonal lesions in the smoking damaged respiratory epithelium including histologically normal epithelium as well as in epithelium showing histologic changes of preneoplasia.

Genetic abnormalities of SCLC– Loss of Rb gene

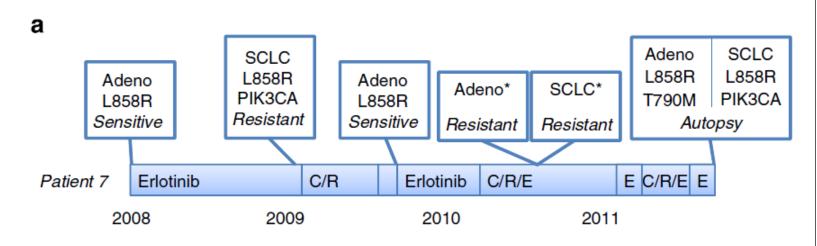
➤ Besides chromosome 3p deletion, chromosomal regions of 13q and 17p are also frequently affected in SCLC.


Harbour W et al. Science. 1988, 241:353-7.

Genetic abnormalities of SCLC – Inactivation of TP53 gene

Table 1. Abnormalities of p53 in lung cancer lines. Terms and symbols for mRNA levels are as follows: +, easily detectable p53 transcripts comparable to levels found in normal lung; reduced or trace, greatly reduced amount of transcript compared to normal lung; undetectable, undetectable by both Northern blot analysis and the RNase protection assay. Full designation of the cell lines includes the prefix "NCI". All but H60, H69, H82, H187, H345, H378, and H510 were established from patients before treatment.

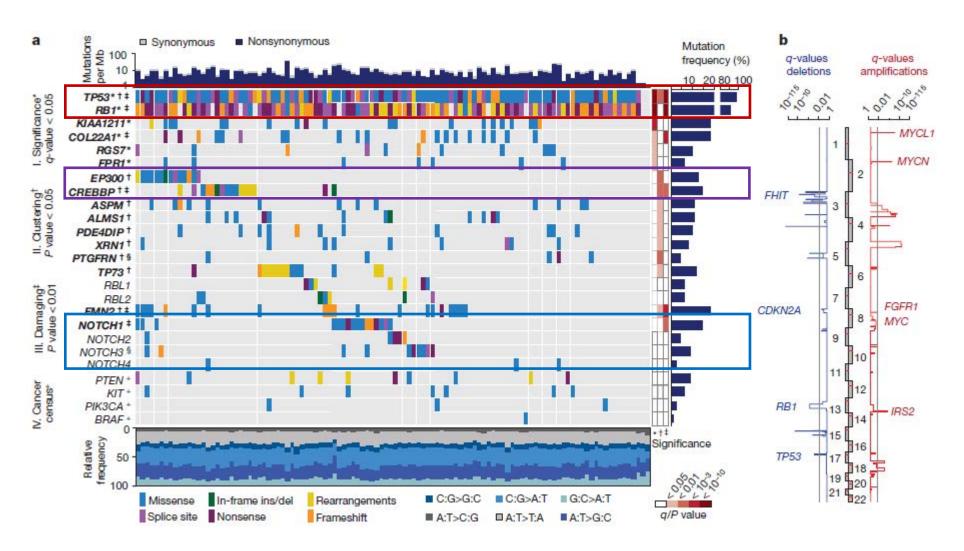
Type of mutations	mRNA level	Tumor cell type	Cell line
Homozygous deletion Homozygous deletion with truncated mRNA	Undetectable Reduced	Bronchioloalveolar Extrapulmonary small cell	H358 H660
DNA rearrangement	Undetectable	Adenocarcinoma	H969
Abnormal size mRNA	+ + + Trace	Small cell Adenocarcinoma Adenosquamous Small cell	H526 H676 H647 H82
Point or small mutation	+ + + + + + Reduced Reduced	Small cell Pulmonary carcinoid Adenocarcinoma Bronchioloalveolar Adenosquamous Large cell Small cell Adenocarcinoma	H1436, H1450 H727 H23 H820 H125 H661 H889, H1092 H920
None detected	Trace Reduced	Small cell Squamous	H60, H69, H209, N417 H520
None detected	+ + + +	Small cell Extrapulmonary small cell Adenosquamous Squamous Large cell	H187, H345, H378 H510 H596 H226 H460, H1385


Conditional inactivation of Trp53 and Rb1 led to SCLC in mouse models

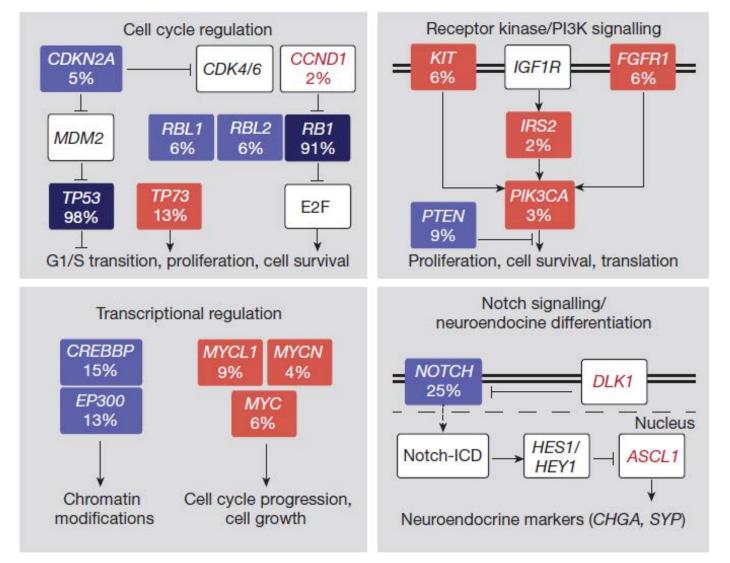
SCLC became detectable within 196-350 days in the mouse model with conditional inactivation of TP53 and Rb1.

(H&E staining)

SCLC conversion is a resistance mechanism to EGFR TKI in lung adenocarcinoma

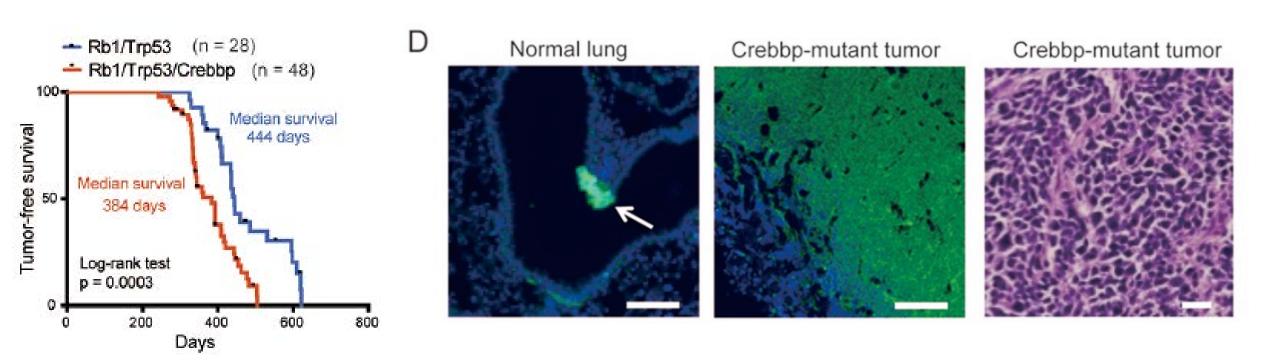


b				
Sample	Normal liver	Diaphragm tumour	Lung tumour	Liver tumour
Histological features	Normal tissue	Adenocarcinoma	SCLC	SCLC
Number of reads	179,298,190	350,864,233	388,189,232	318,482,313
Average coverage	146	287	319	253
Primary EGFR mutation	WT	L858R	L858R	L858R
Secondary EGFR mutation	WT	T790M	WT	WT
PIK3CA status	WT	WT	E545K	E545K
TP53 status	WT	WT/∆154–163	-/∆154−163	-/∆154-163

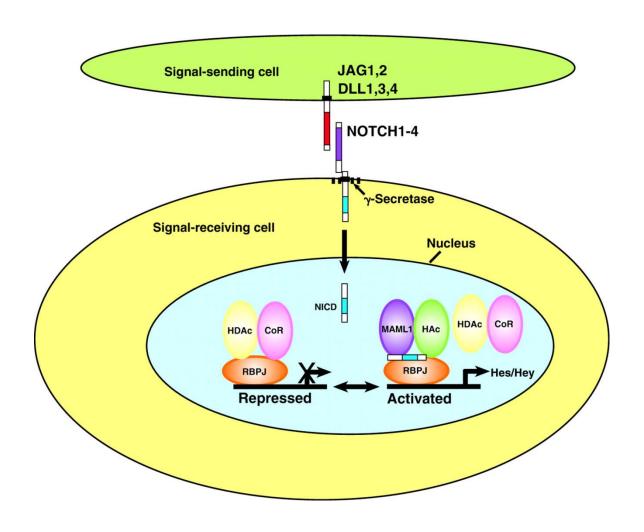

Table 1 RB status of TKI-resistant patients.					
Patient	Cancer type	Resistance	Histology	RB status	Detection method
1	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	NE	Neg	IHC/genetic
	Lung	Post	NE	Neg	IHC/genetic
2	Lung	Pre	Adeno	Pos	IHC
	Lung	Pre	Adeno	Neg	IHC
	Lung	Post	NE	Neg	IHC
3	Lung	Pre	Adeno	Pos	IHC
1545	Lung	Post	NE	Neg	IHC
4	Lung	Post	NE	Neg	IHC
5	Lung	Post	NE	Neg	IHC
6	Lung	Pre	Adeno	Neg	IHC
3-15	Lung	Post	NE	Neg	IHC/genetic*
7	Lung	Post	Adeno	Pos	IHC/genetic
	Lung	Post	NE	Neg	IHC/genetic
	Lung	Post	NE	Neg	Genetic
8	Lung	Post	Adeno	Pos	IHC
	Lung	Post	NE	Neg	IHC
9	Lung	Post	NE	Neg	IHC
10	Lung	Post	Adeno	Neg	IHC
11	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
12	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
13	Lung	Post	Adeno	Pos	IHC
14	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
15	Lung	Post	Adeno	Pos	IHC
16	Lung	Pre	Adeno	Pos	IHC
200.00	Lung	Post	Adeno	Pos	IHC
17	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
18	Lung	Post	Adeno	Pos	IHC
19†	Lung	Intrinsic	NE	Neg	IHC

Niederst MJ et al. Nat Commun. 2015;6:6377.

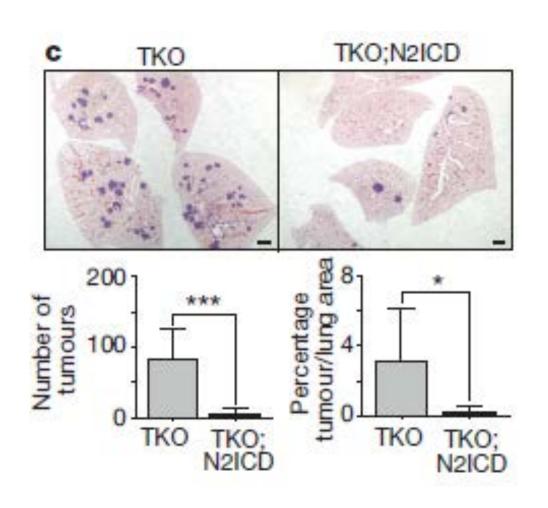
Genomic abnormalities of SCLC: WES Analysis

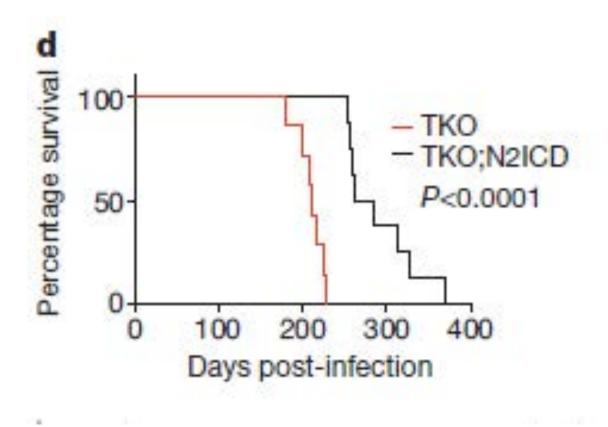


Pathways that are recurrently affected in SCLC

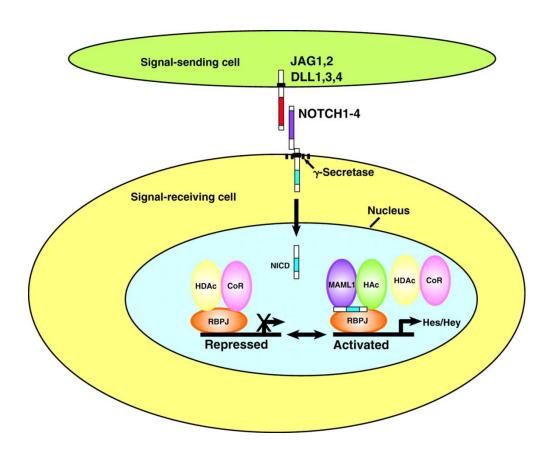

George et al. Nature 2015;524(7563):47-53

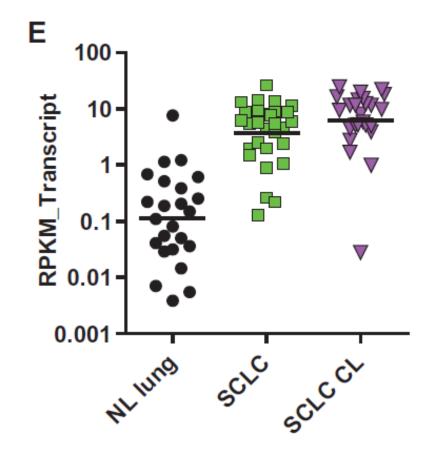
Inactivation of Crebbp accelerated development of SCLC in a mouse model

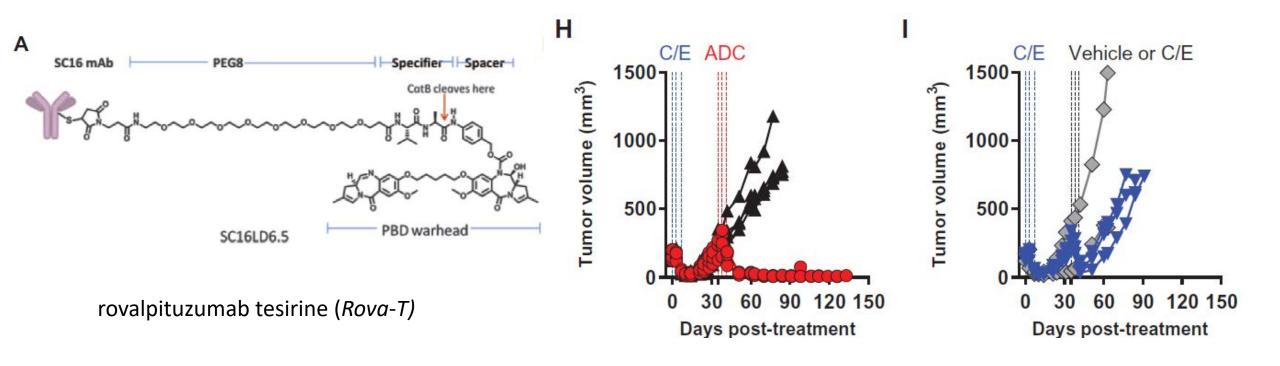



Examples of Translational medicine: Story of Rova-T

Notch Signaling Pathway



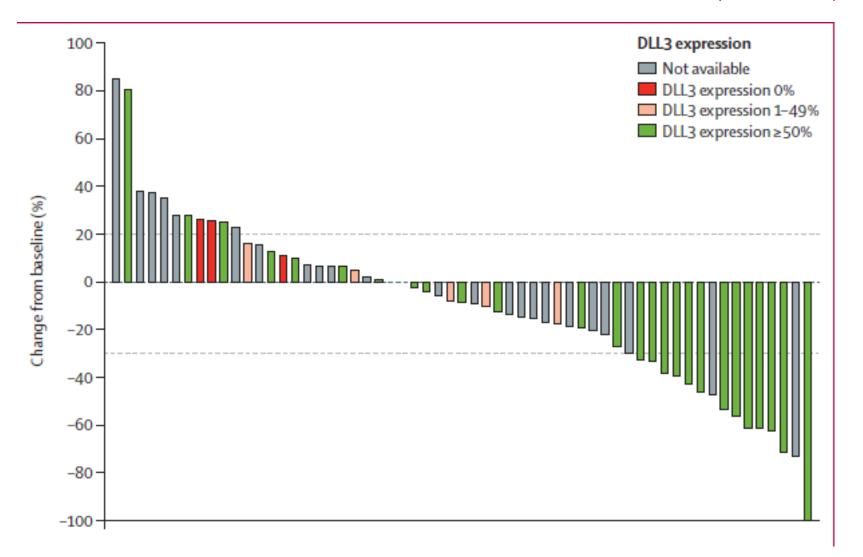

Forced activation of Notch signaling decreased SCLC growth in a transgenic mouse model



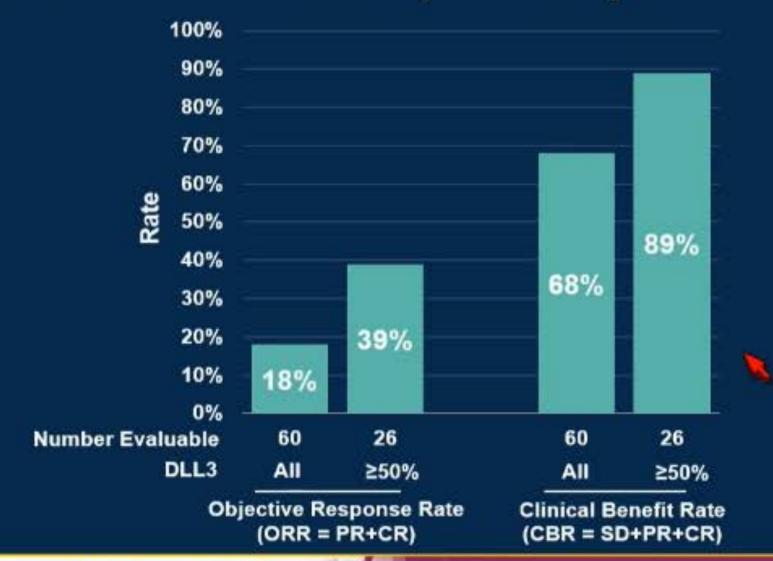
Overexpression of DLL3 in SCLC

Rova-T: a DLL3 targeting antibody-drug conjugate

Subject Baseline Characteristics (n=74)


Characteristic	Number (%)
Median Age, years (range)	61 (38-81)
Female	32 (43%)
Baseline ECOG: 0 / 1 / 2	21 (28%) / 50 (68%) / 3 (4%)
Extensive Disease at Presentation	56 (76%)
Response to 1 st line therapy Sensitive ¹ Resistant ² Refractory ³	39 (53%) 23 (31%) 7 (9%)
Not evaluable Treatment-Free Interval (before 2 nd line)	5 (7%) 4.1 months (0.2-89.1)
Hx CNS mets (Per Investigator)	21 (28%)

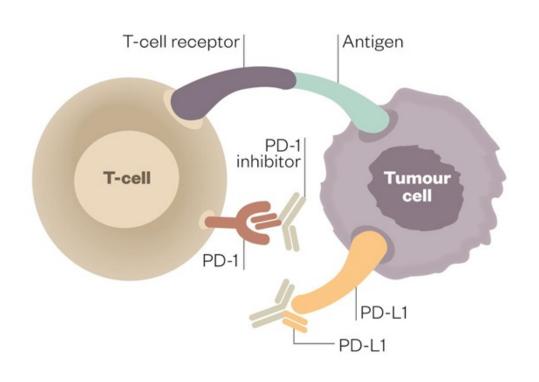
Characteristic	Number (%)
Prior Lines of Therapy: 1 / 2	39 (53%) / 35 (47%)
Prior treatments Platinum/Etoposide Platinum/Other Platinum/Etoposide/Other Topotecan Temozolomide ABT-888 Radiation Other	71 (96%) 5 (7%) 7 (9%) 8 (11%) 10 (14%) 8 (11%) 61 (82%) 16 (22%)
Tumor DLL3 Expression (any intensity): ≥ 1% of tumor cells ≥ 50% of tumor cells	42/48 (88%) 32/48 (67%)

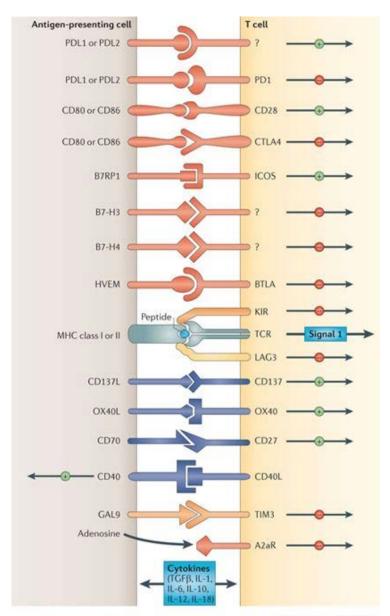

- 1.2 Best response of SD or better to 1st line therapy, and 1st-2nd line TFI 1≥ 90 days or 2<90 days.</p>
- Best response of PD to 1st line therapy.

Waterfall plot showing best change in tumor burden from baseline at active treatment doses (N=60)

RECIST Confirmed Responses per Investigator

Response-Evaluable Subjects Active Doses (0.2-0.4 mg/kg)


Phase II result of Roya-T

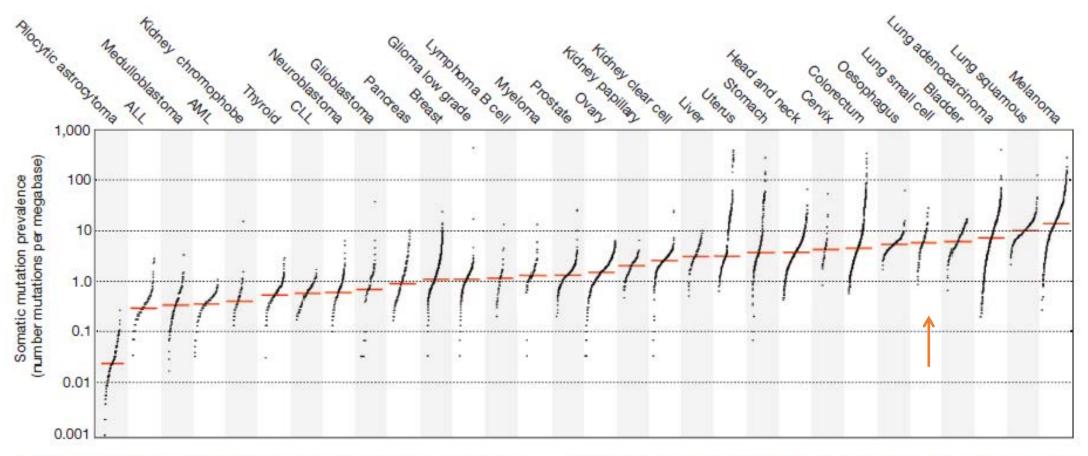
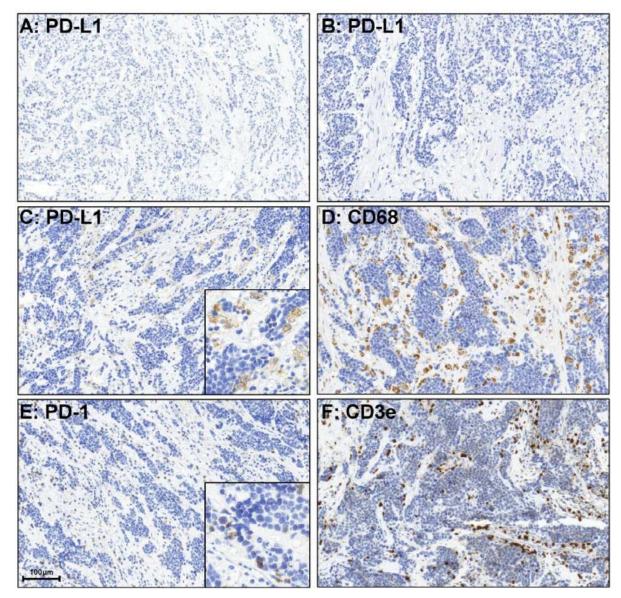

Summary of Investigator Assessed Best Overall Response Rate, Independent Review Committee (IRC) Assessed Objective Response Rate, Duration of Response and Overall Survival in Third-Line SCLC Patients with High DLL3 Expression (N = 177)*

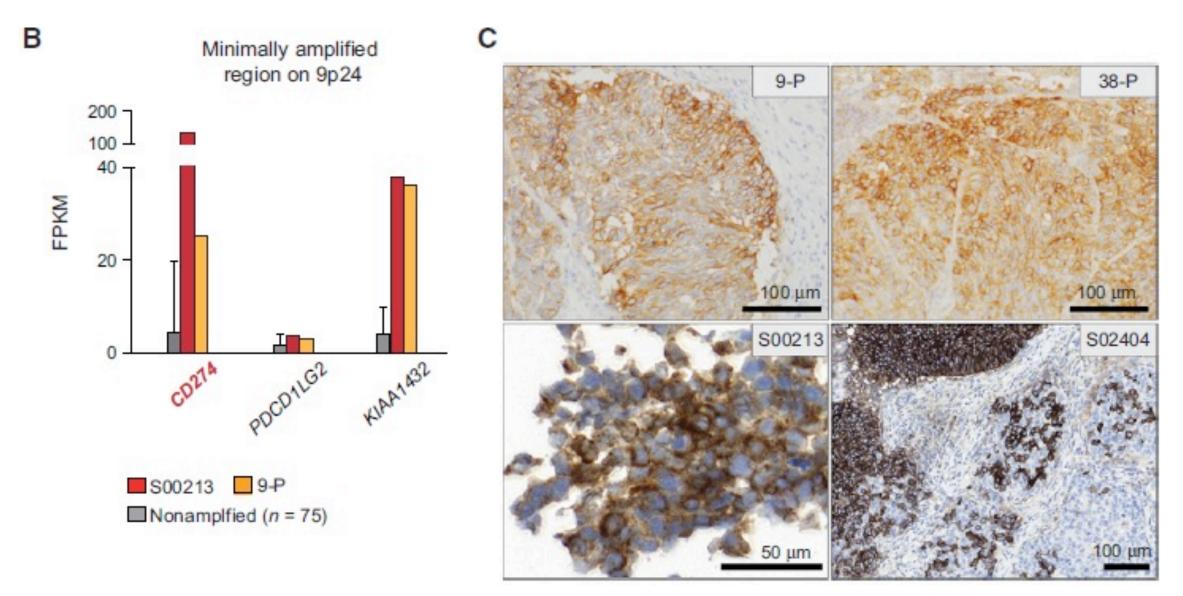
	DLL3 High 3L (N = 177)
Investigator Assessed Outcome	
Best Overall Response Rate ^a (95% CI)	29% (22%, 36%)
IRC Assessed Outcomes	
Objective Response Rate (by RECIST criteria – v1.1) ^b (95% CI)	16% (11%, 22%)
Duration of Objective Response (months) Median (months) (95% CI)	4.1 (3.0, 4.2)
Overall Survival	4
Median (months) (95% CI)	5.6 (4.9, 6.8)
Probability of Subjects Alive at 12 months (95% CI) ^c	17.5% (10.8%, 25.5%)

Immunotherapy in SCLC

Checkpoint Signaling and Immune Activation

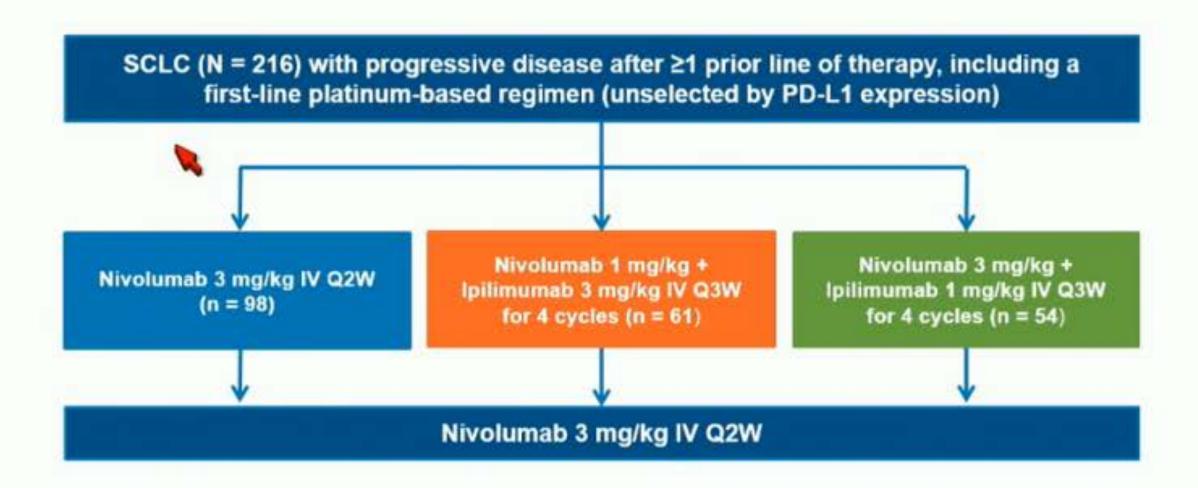
Tumor Mutation Burdens in different cancers


Figure 1 | The prevalence of somatic mutations across human cancer types. Every dot represents a sample whereas the red horizontal lines are the median numbers of mutations in the respective cancer types. The vertical axis (log scaled) shows the number of mutations per megabase whereas the different

cancer types are ordered on the horizontal axis based on their median numbers of somatic mutations. We thank G. Getz and colleagues for the design of this figure²⁶. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia.

PD-1 and PD-L1 are expressed in the tumor stroma of small cell carcinoma in a small subset (18.5%) of patients



CD274 (PD-L1) gene is amplified in 1.9% of SCLC

George et al. Clinical Cancer Research 2017, 23(5):1220-6

Nivolumab +/- Ipilimumab in Recurrent SCLC: CheckMate 032 Study Design

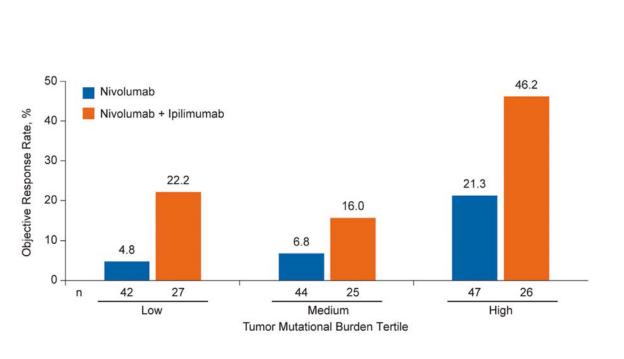
Nivolumab +/- Ipilimumab in Recurrent SCLC: Baseline Patient Characteristics

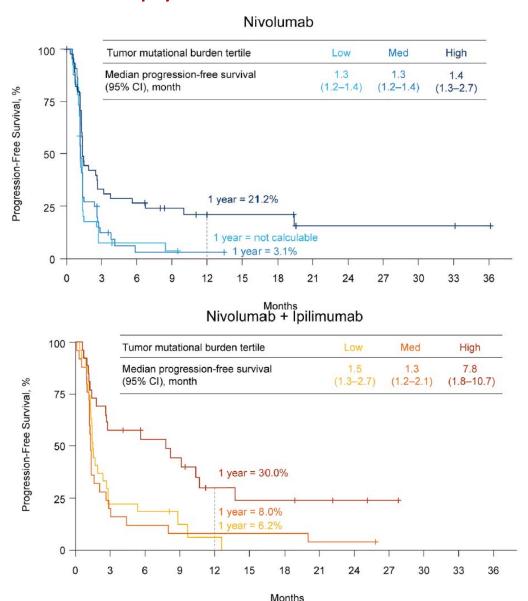
	Nivolumab-3 (n = 98)	Nivolumab-1 + lpilimumab-3 (n = 61)	Nivolumab-3 + Ipilimumab-1 (n = 54)
Median age, years (range)	62.5 (45–81)	66.0 (37-84)	61.0 (34–74)
Male, %	62	57	59
Race, % White Black/African American Other	93 3 4	98 2 0	96 0 2
Prior treatment regimens, % 1 2–3 >3	41 56 3	52 38 10	43 52 6
Current/former smoker, %	97	93	89
PD-L1 expression level,% ≥1% ^a <1% ^a Not evaluable/missing ^b	14 86 30	24 76 39	13 88 26

Percentage of PD-L1 evaluable patients; *Percentage of all patients in cohort

	Nivolumab 3 mg/kg (n=98)	Nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (n=61)	Nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (n=54)
Objective response; 95% Cl	10 (10%; 5–18)	14 (23%; 13-36)	10 (19%; 9–31)
Best overall response			
Complete response	0	1(2%)	0
Partial response	10 (10%)	13 (21%)	10 (19%)
Stable disease	22 (22%)	13 (21%)	9 (17%)
Progressive disease	52 (53%)	23 (38%)	29 (54%)
Unable to determine	12 (12%)	8 (13%)	6 (11%)
Not reported	2 (2%)	3 (5%)	0
Time to objective response (IQR), months	2.0 (1.3-2.8)	2-1 (1-4-2-8)	1-4 (1-3-2-7)
Data are n (%) unless othe prior to database lock.	rwise stated. All p	atients were enrolle	d at least 90 days

A 100-- Nivolumab 3 mg/kg ▼ Confirmed partial response or complete response + First documented occurrence of new lesion Patients off treatment ☐ % change truncated to 100% **Nivolumab** 3 mg/Kg -75-100 ¬ Nivolumab 1 mg/kg plus ipilimumab 3 mg/kg ▼ Confirmed partial response or complete response + First documented occurrence of new lesion Patients off treatment ☐ % change truncated to 100% Nivo 1 mg/kg 3 mg/kg lpi -75 - Nivolumab 3 mg/kg plus ipilimumab 1 mg/kg ▼ Confirmed partial response or complete response + First documented occurrence of new lesion Patients off treatment ☐ % change truncated to 100% Nivo 3 mg/kg 1 mg/kg lpi 72 78 84 90 Time since start of treatment (weeks)


Antonia S. et al. Lancet Oncol. 2016;17(7):883-95.


Nivolumab +/- Ipilimumab in Recurrent SCLC: Treatment-Related AEs in ≥10% of Patients

	Nivolumab-3 (n = 98)		Nivolumab-1 + Ipilimumab-3 (n = 61)		Nivolumab-3 + Ipilimumab-1 (n = 54)	
	Any grade, %	Grade 3-4, %	Any grade, %	Grade 3-4, %	Any grade, %	Grade 3-4, %
Total treatment-related AEs	53	13	79	30	74	19
Fatigue	11	1	26	0	22	0
Pruritus	11	0	20	2	9	0
Diarrhea	7	0	21	5	17	2
Nausea	7	0	11	2	7	0
Decreased appetite	6	0	7	0	11	0
Hypothyroidism	3	0	16	2	7	0
Hyperthyroidism	2	0	-11	0	6	0
Rash	2	0	20	3	7	0
Rash, maculopapular	1	0	13	3	4	0
Lipase increased	0	0	-11	8	0	0
Treatment-related AEs leading to discontinuations	(3	1	1		7

- Two treatment-related deaths occurred in the nivolumab-1 + ipilimumab-3 arm: one due to myasthenia gravis and one due to
 worsening of renal failure. One treatment-related death due to pneumonitis occurred in the nivolumab-3 + ipilimumab-1 arm
- · Treatment-related limbic encephalitis was reported in 2 (1%) patients; 1 case resolved, and outcome for 1 case was not reported
- Treatment-related pneumonitis occurred in 8 (4%) patients; 6 cases resolved, outcome for 1 case is unknown, and 1 case was fatal

Tumor mutation burden is a potential biomarker to predict response to anti-PD1 therapy

Extrapulmonary small cell carcinoma (EPSCC)

Table 1
Frequency of EPSCC per site of origin.

	Percentage of SCC/total per site of origin	Estimated number of patients in US per year*
Pulmonary	15-20%	32,250-43,000
Oesophagus	0.8-2.4%	130-395
Larynx	0.5-1%	60-120
Bladder	0.3-1.0%	200-680
Cervix	±1%	±110
Prostate	±2%	±250
Unknown primary	7-30% of all EPSCC	70–300

SCC denotes small cell carcinoma; EPSCC denotes extrapulmonary mall cell carcinoma.

- 1. EPSCC is a rare group of cancers.
- 2. First-line systemic chemotherapy for EPSCC is EP doublet.
- 3. Brain metastasis is rare in EPSCC except for prostate and head & neck SCC. PCI should be decided on an individual basis.

^{*} http://www.cancer.gov/cancertopics/pdq.

Summary

SCLC is a recalcitrant cancer and new therapy is urgently needed.

 Inactivation of TP53 and RB1 is almost universal in SCLC. Other gene mutations may facilitate development and/or growth of SCLC.

 Immune checkpoint inhibitor Nivolumab is recently approved as a third-line treatment for relapsed SCLC. Other novel therapies are being developed.

Questions?