Pancreatic Cancer: Current Understanding and Future Challenges

TRACO, 2014

• Breakthrough Therapies

Clinical Advances

Pancreatic Cancer: Current Understanding and Future Challenges

S. Perwez Hussain
Pancreatic Cancer Unit
Laboratory of Human Carcinogenesis

Pancreatic Cancer: Incidence and Mortality

Pancreatic Cancer Incidence and Mortality

Estimated Deaths			Siegel R et. al., CA Cancer J Clin, 64, 2014			
			Males	Females		
Lung & bronchus	86,930	28%		Lung & bronchus	72,330	26%
Prostate	29,480	10%		Breast	40,000	15%
Colorectum	26,270	8%		Colorectum	24,040	9%
Pancreas	20,170	7%		Pancreas	19,420	7%
Liver & intrahepatic bile duct	15,870	5%		Ovary	14,270	5%
Leukemia	14,040	5%		Leukemia	10,050	4%
Esophagus	12,450	4%		Uterine corpus	8,590	3%
Urinary bladder	11,170	4%		Non-Hodgkin lymphoma	8,520	3%
Non-Hodgkin lymphoma	10,470	3%		Liver & intrahepatic bile duct	7,130	3%
Kidney & renal pelvis	8,900	3%		Brain & other nervous system	6,230	2%
All Sites	310,010	100%		All Sites	275,710	100%

- 4th Leading Cause of Cancer Deaths in the United States.
- Median Survival < 6 Months.
- Estimated 46,420 New Cases and 39,590 Deaths in 2014.
- No Effective Treatment.

Pancreatic Cancer and 2030

Pancreatic Cancer: Second Leading Cause of Cancer-related Death by 2030

Risk Factors and Inherited Syndromes

Risk Factors and Inherited Syndromes

Variable	Approximate Risk	
Risk factor		
Smoking ³	2–3	
Long-standing diabetes mellitus ⁴	2	
Nonhereditary and chronic pancreatitis ⁵	2–6	
Obesity, inactivity, or both ⁶	2	
Non-O blood group ⁷	1–2	
Genetic syndrome and associated gene or genes — $\%$		
Hereditary pancreatitis (PRSS1, SPINK1)8	50	
Familial atypical multiple mole and melanoma syndrome (<i>p16</i>)9	10–20	
Hereditary breast and ovarian cancer syndromes (BRCA1, BRCA2, PALB2) ^{10,11}	1–2	
Peutz-Jeghers syndrome (STK11 [LKB1]) ¹²	30-40	
Hereditary nonpolyposis colon cancer (Lynch syndrome) (MLH1, MSH2, MSH6) ¹³	4	
Ataxia-telangiectasia (ATM)14	Unknown	
Li-Fraumeni syndrome (P53)15	Unknown	

^{*} Values associated with risk factors are expressed as relative risks, and values associated with genetic syndromes are expressed as lifetime risks, as compared with the risk in the general population.

Disappointing Progress in the Treatment of Pancreatic Cancer

Pancreatic cancer treatment

Disappointing Progress in the Treatment of Pancreatic Cancer

 A Combination of nab-Paclitaxel and Gemcitabine Improved Survival in Advanced Pancreatic cancer

2013

Improved Survival

CENTER FOR CANCER RESEARCH

Improved Survival in Resected Pancreatic Cancer Cases

Molecular Differences in Tumors Determine Patient Outcome?

Progression Model

Progression Model of Pancreatic Carcinogenesis

Desmoplastic stroma

Prominent, Desmoplastic Stroma in Pancreatic Cancer

H/E

Pancreatic cancer heterogeneity

Pancreatic Cancer is Highly Heterogenous

From: Jone, S. et al., Science, 321, 2008

PDAC subtypes

Are There Different Molecular Subtypes of PDAC?

Metabolic Reprogramming

Metabolic Reprogramming in Pancreatic Cancer

Stromal networks

Complex Stromal Networks Supporting Pancreatic Cancer Progression and Therapeutic Resistance

Disease outcome

Treatment Strategies to Improve Disease Outcome

Drug Delivery and Effectiveness of Systemic Therapy

Targeting Stroma

Mouse model

Pancreatic Cancer Mouse Model (KPC)

*LSL-Kras-G12D X p53 LSL R172H X Pdx-Cre 1

Pancreatic Ductal Adenocarcinoma (PDAC)

(Median Survival = 4-5 months)

H&E

Inhibition of Hedgehog signaling

Inhibition of Hedgehog Signaling Depleted Stroma, Enhanced Drug Delivery and Improved Survival in Mice

Enzymatic targeting

Enzymatic Targeting of Stroma Enhances Therapeutic Response

Enzymatic targeting

Enzymatic Targeting of Stroma Enhances Therapeutic Response

Two Faces of Anti-Stromal Therapy

Two faces of anti-stromal therapy.

Stromal-targeting may not (always)
have beneficial therapeutic response

Sonic Hedgehog as a tumor suppressor

Sonic Hedgehog as a Tumor Suppressor in PDAC

Genetically Engineered Mouse Model

Myofibroblast depletion

Myofibroblast Depletion Enhances PDAC

Complex tumor-stromal interaction in PDAC Tumor-Stromal interaction is complex and therapeutic approaches targeting stroma may require new molecular taxonomy in pancreatic cancer

Inflammation and pancreatic cancer

Inflammation and Pancreatic Cancer

Inflammatory changes

Inflammatory Changes During Development and Progression of Pancreatic Cancer

Kras in pancreatic cancer

Inflammation Enhances and Maintains a Pathologic Level of Oncogenic KRAS in Pancreatic Cancer

Macrophage inhibitory factor (MIF)

Macrophage Migration Inhibitory Factor (MIF)

MIF, Inflammation and Cancer

MIF, Inflammation and Cancer

J. Exp. Med., 190, 1999

At the Crossroads of Inflammation and Tumorigenesis

By Carlos Cordon-Cardo* and Carol Prives‡

From the *Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021; and the [‡]Department of Biological Sciences, Columbia University, New York, New York 10027

Molecular Cell, Vol. 17, 225-236, January 21, 2005, Copyright @2005 by Elsevier Inc. DOI 10.1016/j.molcel.2004.11.052

Macrophage Migration Inhibitory Factor MIF Interferes with the Rb-E2F Pathway

Oleksi Petrenko* and Ute M. Moll*

Immunity, 26, 2007

Perspective

Macrophage Migration Inhibitory Factor

Increased Expression of MIF in Tumors from Pancreatic Carcinoma Cases

Increased Expression of MIF in Tumors from Pancreatic Carcinoma Cases

A Higher Expression of MIF is Associated with Poor Survival in Human Pancreatic Carcinoma Cases

A Higher Expression of MIF is Associated with Poor Survival in Human Pancreatic Carcinoma Cases

Human Pancreatic Carcinoma Cases

	Univariate Ana	lysis	Multivariate Analysis		
Variables (comparison/referent)	HR (95%CI)	P	HR (95%CI)	P	
MIF (High/Low)	2.21 (1.16-4.22)	0.016	2.26 (1.17-4.37)	0.015	
Grading (G3-4/G1-2)	1.86 (1.01-3.45)	0.048	1.90 (1.02-3.54)	0.044	
Resection margin (R1/R0)	1.53 (0.82-2.83)	0.178			
Stage (IIB-III/I-IIA)	1.62 (0.79-3.36)	0.191			

A higher expression of MIF is associated with poor survival in human pancreatic carcinoma cases

A Higher Expression of MIF is Associated with Poor Survival in Human Pancreatic Carcinoma Cases

Validation in Independent Cohorts

EMT Enhances Malignant Progression

EMT Enhances Malignant Progression in Pancreatic cancer

Wang et. al., Nat. Rev. Gastroenterology & Hepatol., 2011
* Rhim et. al., Cell, 2012.

MIF Induces EMT

MIF induces EMT in Pancreatic Cancer Cells

MIF Induces EMT in Pancreatic Cancer Cells

MIF Induces EMT in Pancreatic Cancer Cells

MIF accelerates tumor growth

MIF Accelerates Tumor Growth and Metastasis & CENTER FOR CANCER RESEARCH in Orthotopic Xenografts in Mice

MIF alters Global Gene Expression Profile

MIF Induces a Marked Change in Global Gene Expression
Profile including EMT-related Genes in Orthotopic Tumors

 MIF over-expressing tumors are poorly differentiated.

- MIF induces a change in global gene expression profile.
- MIF over-expressing tumors showed expression of EMTrelated genes.

Ongoing Study

CENTER FOR CANCER RESEARCH

HYPOTHESIS: MIF Enhances Pancreatic Cancer Progression

Pancreatic Tumors in KPC Mice Express a High Level of MIF

(KPC: KRAS^{G12D}; P53^{R172H}; Pdx-1-Cre)

MIF Immunostaining

KPC

KPC

KPC/MIF-/-

Ongoing Study

MIF-Deficient KPC Mice Show Longer Survival

SUMMARY

SUMMARY

- A higher MIF expression is associated with poor outcome in PDAC patients.
- MIF induces EMT in pancreatic cancer cell lines.
- MIF enhances growth and metastasis of tumor xenografts in mice.
- MIF-deficiency increases survival in KPC mice with lethal PDAC.
- MIF may be a candidate target for designing improved treatment.

Pancreatic Tumor Biology

Understanding Pancreatic Tumor Biology is Key to Improving Disease Outcome

