Research by Pathak and Hu Labs Featured on Cover of 2020 Retroviruses Meeting Abstract Book

HIV Dynamics and Replication Program
HIV virion image
HIV Dynamics and Replication Program
HIV DRP staff photo September 2019
HIV Dynamics and Replication Program
Melissa Fernandez work-in-progress seminar August 2018
HIV Dynamics and Replication Program
HIV Dynamics and Replication Program
HIV DRP Think Tank Meeting 2017
HIV Dynamics and Replication Program
Announcement of 2020 David Derse Memorial Lecture and Award
HIV Dynamics and Replication Program
Sean Patro's poster presentation at CROI 2019
HIV Dynamics and Replication Program
John Coffin and Stephen Hughes participating in This Week in Virology podcast at 2018 Cold Spring Harbor Retroviruses Meeting
HIV Dynamics and Replication Program
Students and postbac fellows in the HIV Dynamics and Replication Program July 2019

Research by Pathak and Hu Labs Featured on Cover of 2020 Retroviruses Meeting Abstract Book

Front cover of Cold Spring Harbor 2020 Retroviruses Meeting program bookA recent study published by the research groups of Vinay Pathak and Wei-Shau Hu in Proceedings of the National Academy of Sciences USA was featured on the front cover of the Cold Spring Harbor 2020 Retroviruses Meeting abstract book. Pathak lab member Ryan Burdick launched the meeting with his talk on the study and reported that HIV-1 uncoats in the nucleus near sites of integration. Contrary to the prevailing theory for more than 40 years that retroviral uncoating occurs in the cytoplasm, the study team showed that HIV-1 cores are essentially intact as they enter the nucleus, where they complete reverse transcription before uncoating near their sites of integration into the host genome. These unexpected results fundamentally alter the current understanding of HIV-1 replication, which could lead to the development of more effective strategies and drugs for the treatment of HIV infections.

In the cover image, the left panel shows an HIV-1 capsid localized in the nucleus and the right panel shows a site of transcription of the viral genome at the site where the capsid localized. To read more about the study, see the original research article and the commentary "Entering and breaking for HIV?" in Nature Reviews Microbiology.