Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Hurwitz Website

Arthur Andrew Hurwitz, Ph.D.

Selected Publications

1)  Zhu Z, Singh V, Watkins SK, Bronte V, Shoe JL, Feigenbaum L, Hurwitz AA.
High-avidity T cells are preferentially tolerized in the tumor microenvironment.
Cancer Res. 73: 595-604, 2013.
2)  Watkins SK, Hurwitz AA.
FOXO3: A master switch for regulating tolerance and immunity in dendritic cells.
Oncoimmunology. 1: 252-254, 2012.
3)  Hurwitz AA, Watkins SK.
Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells.
Cancer Immunol. Immunother. 61: 289-93, 2012.
4)  Watkins SK, Zhu Z, Watkins KE, Hurwitz AA.
Isolation of immune cells from primary tumors.
J Vis Exp. e3952, 2012.
5)  Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, Lee DH, Borin JF, Naslund MJ, Alexander RB, Dorsey TH, Stephens RM, Croce CM, Ambs S.
MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer.
Nucleic Acids Res. 40: 3689-703, 2012.
6)  Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, Schetter AJ, Watkins SK, Hurwitz AA, Dorsey TH, Stephens RM, Croce CM, Ambs S.
MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer.
Oncogene. [Epub ahead of print], 2012.
7)  Watkins SK, Zhu Z, Riboldi E, Shafer-Weaver KA, Stagliano KE, Sklavos MM, Ambs S, Yagita H, Hurwitz AA.
FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer.
J. Clin. Invest. 121: 1361-72, 2011.
8)  Chen X, Hamano R, Subleski JJ, Hurwitz AA, Howard OM, Oppenheim JJ.
Expression of costimulatory TNFR2 induces resistance of CD4(+)FoxP3(-) conventional T cells to suppression by CD4(+)FoxP3(+) regulatory T Cells.
J. Immunol. 185: 174-82, 2010.
9)  Shafer-Weaver KA, Anderson MJ, Stagliano K, Malyguine A, Greenberg NM, Hurwitz AA.
Cutting Edge: Tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells.
J. Immunol. 183: 4848-52, 2009.
10)  Shafer-Weaver KA, Watkins SK, Anderson MJ, Draper LJ, Malyguine A, Alvord WG, Greenberg NM, Hurwitz AA.
Immunity to murine prostatic tumors: continuous provision of T-cell help prevents CD8 T-cell tolerance and activates tumor-infiltrating dendritic cells.
Cancer Res. 69: 6256-64, 2009.
11)  Salcedo R, Hixon JA, Stauffer JK, Jalah R, Brooks AD, Khan T, Dai RM, Scheetz L, Lincoln E, Back TC, Powell D, Hurwitz AA, Sayers TJ, Kastelein R, Pavlakis GN, Felber BK, Trinchieri G, Wigginton JM.
Immunologic and therapeutic synergy of IL-27 and IL-2: enhancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow.
J. Immunol. 182: 4328-38, 2009.
12)  Singh V, Ji Q, Feigenbaum L, Leighty RM, Hurwitz AA.
Melanoma progression despite infiltration by in vivo-primed TRP-2-specific T cells.
J. Immunother. 32: 129-39, 2009.
13)  Mazzucchelli R, Hixon JA, Spolski R, Chen X, Li WQ, Hall VL, Willette-Brown J, Hurwitz AA, Leonard WJ, Durum SK.
Development of regulatory T cells requires IL-7R{alpha} stimulation by IL-7 or TSLP.
Blood. [Epub ahead of print], 2008.
14)  Wuest TY, Willette-Brown J, Durum SK, Hurwitz AA.
The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T cells.
J. Leukoc. Biol. [Epub ahead of print], 2008.
15)  Hu PQ, Hurwitz AA, Oppenheim JJ.
Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice.
J. Rheumatol. 34: 2243-52, 2007.
16)  Shafer-Weaver K, Anderson M, Malyguine A, Hurwitz AA.
T cell tolerance to tumors and cancer immunotherapy.
Adv. Exp. Med. Biol. 601: 357-68, 2007.
17)  Anderson MJ, Shafer-Weaver K, Greenberg NM, Hurwitz AA.
Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer.
J. Immunol. 178: 1268-76, 2007.
18)  Ji Q, Gondek D, Hurwitz AA.
Provision of granulocyte-macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response.
J. Immunol. 175: 1456-63, 2005.
19)  Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis E, Leibovich BC, Allison JP, Kwon ED.
Augmentation of T cell levels and responses induced by androgen deprivation.
J Immunol. 173: 6098-108, 2004.
20)  Hurwitz AA, Ji Q.
Autoimmune depigmentation following sensitization to melanoma antigens.
Methods Mol Med. 102: 421-8, 2004.
21)  Vesosky B, Hurwitz AA.
Modulation of costimulation to enhance tumor immunity.
Cancer Immunol Immunother. 52: 663-669, 2003.
22)  Hurwitz AA, Yanover P, Markowitz M, Allison JP, Kwon ED.
Prostate cancer: advances in immunotherapy.
BioDrugs. 17: 131-138, 2003.
23)  Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice.
Proc Natl Acad Sci U S A. 99: 3013-3017, 2002.
24)  van Elsas A, Sutmuller RP, Hurwitz AA, Ziskin J, Villasenor J, Medema JP, Overwijk WW, Restifo NP, Melief CJ, Offringa R, Allison JP.
Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy.
J Exp Med. 194: 481-489, 2001.
25)  Evans DE, Prell RA, Thalhofer CJ, Hurwitz AA, Weinberg AD.
Engagement of OX40 enhances antigen-specific CD4(+) T cell mobilization/memory development and humoral immunity: comparison of alphaOX-40 with alphaCTLA-4.
J Immunol. 167: 6804-6811, 2001.
26)  Hurwitz AA, Foster BA, Allison JP, Greenberg NM, Kwon ED.
The TRAMP mouse as a model for prostate cancer.
Curr Protoc Immunol. Chapter 20: Unit 20.5, 2001.
27)  Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP.
Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade.
Cancer Res. 60: 2444-2448, 2000.
28)  Hurwitz AA, Kwon ED, van Elsas A.
Costimulatory wars: the tumor menace.
Curr Opin Immunol. 12: 589-596, 2000.
29)  van Elsas A, Hurwitz AA, Allison JP.
Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation.
J Exp Med. 190: 355-366, 1999.
30)  Kwon ED, Foster BA, Hurwitz AA, Madias C, Allison JP, Greenberg NM, Burg MB.
Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy.
Proc Natl Acad Sci U S A. 96: 15074-15079, 1999.
31)  Hurwitz AA, Yu TF, Leach DR, Allison JP.
CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma.
Proc. Natl. Acad. Sci. U.S.A. 95: 10067-71, 1998.
Click Here to View Collapsed Bibliography.

This page was last updated on 4/11/2013.