Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Kireeva Website

Maria Kireeva, Ph.D.

Selected Publications

1)  Imashimizu M, Kireeva ML, Lubkowska L, Gotte D, Parks AR, Strathern JN, Kashlev M.
Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II.
J. Mol. Biol. 425: 697-712, 2013.
2)  Strathern J, Malagon F, Irvin J, Gotte D, Shafer B, Kireeva M, Lubkowska L, Jin DJ, Kashlev M.
The fidelity of transcription: RPB1 (RPO21) mutations that increase transcriptional slippage in S. cerevisiae.
J. Biol. Chem. 288: 2689-99, 2013.
3)  Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, Cukier RI, Nudler E, Burton ZF.
The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.
Biochim. Biophys. Acta. 1829: 187-98, 2013.
4)  Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA.
Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs.
Nano Lett. 12: 5192-5, 2012.
5)  Walmacq C, Cheung AC, Kireeva ML, Lubkowska L, Ye C, Gotte D, Strathern JN, Carell T, Cramer P, Kashlev M.
Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage.
Mol. Cell. 46: 18-29, 2012.
6)  Kireeva ML, Opron K, Seibold SA, Domecq C, Cukier RI, Coulombe B, Kashlev M, Burton ZF.
Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase.
BMC biophysics. 5: 11, 2012.
7)  Arnold JJ, Sharma SD, Feng JY, Ray AS, Smidansky ED, Kireeva ML, Cho A, Perry J, Vela JE, Park Y, Xu Y, Tian Y, Babusis D, Barauskus O, Peterson BR, Gnatt A, Kashlev M, Zhong W, Cameron CE.
Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides.
PLoS Pathog. 8: e1003030, 2012.
8)  Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M.
Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation.
J. Biol. Chem. 286: 30898-910, 2011.
9)  Seibold SA, Singh BN, Zhang C, Kireeva M, Domecq C, Bouchard A, Nazione AM, Feig M, Cukier RI, Coulombe B, Kashlev M, Hampsey M, Burton ZF.
Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase.
Biochim. Biophys. Acta. 1799: 575-87, 2010.
10)  Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML, Kashlev M, Wang MD.
Synergistic action of RNA polymerases in overcoming the nucleosomal barrier.
Nat. Struct. Mol. Biol. 17: 745-52, 2010.
11)  Kireeva ML, Kashlev M.
Mechanism of sequence-specific pausing of bacterial RNA polymerase.
Proc. Natl. Acad. Sci. U.S.A. 106: 8900-5, 2009.
12)  Kireeva M, Nedialkov YA, Gong XQ, Zhang C, Xiong Y, Moon W, Burton ZF, Kashlev M.
Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase.
Methods. 2009.
13)  Walmacq C, Kireeva ML, Irvin J, Nedialkov Y, Lubkowska L, Malagon F, Strathern JN, Kashlev M.
RPB9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II.
J. Biol. Chem. 2009.
14)  Domecq C, Kireeva M, Archambault J, Kashlev M, Coulombe B, Burton ZF.
Site-directed mutagenesis, purification and assay of Saccharomyces cerevisiae RNA polymerase II.
Protein Expr. Purif. 2009.
15)  Kireeva M, Kashlev M, Burton ZF.
Translocation by multi-subunit RNA polymerases.
Biochim. Biophys. Acta. 1799: 389-401, 2009.
16)  Kireeva ML, Nedialkov YA, Cremona GH, Purtov YA, Lubkowska L, Malagon F, Burton ZF, Strathern JN, Kashlev M.
Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.
Mol. Cell. 30: 557-66, 2008.
17)  Krasilnikova MM, Kireeva ML, Petrovic V, Knijnikova N, Kashlev M, Mirkin SM.
Effects of Friedreich's ataxia (GAA)n*(TTC)n repeats on RNA synthesis and stability.
Nucleic Acids Res. 35: 1075-84, 2007.
18)  Malagon F, Kireeva ML, Shafer BK, Lubkowska L, Kashlev M, Strathern JN.
Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil.
Genetics. 172: 2201-9, 2006.
19)  Kireeva ML, Hancock B, Cremona GH, Walter W, Studitsky VM, Kashlev M.
Nature of the nucleosomal barrier to RNA polymerase II.
Mol. Cell. 18: 97-108, 2005.
20)  Studitsky VM, Walter W, Kireeva M, Kashlev M, Felsenfeld G.
Chromatin remodeling by RNA polymerases.
Trends Biochem. Sci. 29: 127-35, 2004.
21)  Walter W, Kireeva ML, Tchernajenko V, Kashlev M, Studitsky VM.
Assay of the fate of the nucleosome during transcription by RNA polymerase II.
Meth. Enzymol. 371: 564-77, 2003.
22)  Kireeva ML, Lubkowska L, Komissarova N, Kashlev M.
Assays and affinity purification of biotinylated and nonbiotinylated forms of double-tagged core RNA polymerase II from Saccharomyces cerevisiae.
Meth. Enzymol. 370: 138-55, 2003.
23)  Walter W, Kireeva ML, Studitsky VM, Kashlev M.
Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes.
J. Biol. Chem. 278: 36148-56, 2003.
24)  Komissarova N, Kireeva ML, Becker J, Sidorenkov I, Kashlev M.
Engineering of elongation complexes of bacterial and yeast RNA polymerases.
Meth. Enzymol. 371: 233-51, 2003.
25)  Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM.
Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription.
Mol. Cell. 9: 541-52, 2002.
26)  Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M.
Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination.
Mol. Cell. 10: 1151-62, 2002.
27)  Kireeva ML, Komissarova N, Kashlev M.
Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity.
J. Mol. Biol. 299: 325-35, 2000.
28)  Kireeva ML, Komissarova N, Waugh DS, Kashlev M.
The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex.
J. Biol. Chem. 275: 6530-6, 2000.
29)  Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC.
Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3).
J. Biol. Chem. 274: 24321-7, 1999.
30)  Kireeva ML, Lam SC, Lau LF.
Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3.
J. Biol. Chem. 273: 3090-6, 1998.
31)  Babic AM, Kireeva ML, Kolesnikova TV, Lau LF.
CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth.
Proc. Natl. Acad. Sci. U.S.A. 95: 6355-60, 1998.
32)  Kireeva ML, Latinkić BV, Kolesnikova TV, Chen CC, Yang GP, Abler AS, Lau LF.
Cyr61 and Fisp12 are both ECM-associated signaling molecules: activities, metabolism, and localization during development.
Exp. Cell Res. 233: 63-77, 1997.
33)  Wong M, Kireeva ML, Kolesnikova TV, Lau LF.
Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells.
Dev. Biol. 192: 492-508, 1997.
34)  Kireeva ML, MO FE, Yang GP, Lau LF.
Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion.
Mol. Cell. Biol. 16: 1326-34, 1996.
35)  Kireeva ML, Murzina NV, Murzin AG, Uversky VN, Gryaznova OI, Gudkov AT.
Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
Protein Eng. 7: 1373-7, 1994.
36)  Kireeva ML, Bubunenko MG, Bushueva TL.
[Elongation factor EF-Ts interacts with the aminoacyl-tRNA.EF-Tu.GTP complex].
Mol. Biol. (Mosk.). 26: 104-9, 1992.
37)  Bubunenko MG, Kireeva ML, Gudkov AT.
Novel data on interactions of elongation factor Ts.
Biochimie. 74: 419-25, 1992.
Click Here to View Collapsed Bibliography.

This page was last updated on 5/31/2013.