Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Robbins Website

Paul F. Robbins, Ph.D.

Selected Publications

1)  Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA.
Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy.
J. Immunother. 36: 133-51, 2013.
2)  Robbins PF.
Helping tumor cells to die.
J. Immunol. 190: 1897-8, 2013.
3)  Robbins PF, Lu Y, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA.
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells.
Nat. Med. [Epub ahead of print], 2013.
4)  Zhu S, Van den Eynde BJ, Coulie PG, Li YF, El-Gamil M, Rosenberg SA, Robbins PF.
Characterization of T-cell receptors directed against HLA-A*01-restricted and C*07-restricted epitopes of MAGE-A3 and MAGE-A12.
J. Immunother. 35: 680-8, 2012.
5)  Wang QJ, Hanada K, Robbins PF, Li YF, Yang JC.
Distinctive features of the differentiated phenotype and infiltration of tumor-reactive lymphocytes in clear cell renal cell carcinoma.
Cancer Res. 72: 6119-29, 2012.
6)  Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X, Yee C, Robbins PF, Warren EH.
Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer.
J. Immunother. 35: 131-41, 2012.
7)  Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F, Schrump DS, Steinberg SM, Rosenberg SA, Robbins PF.
Levels of peripheral CD4+FoxP3+ regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer.
Blood. 119: 5688-96, 2012.
8)  Lai JP, Robbins PF, Raffeld M, Aung PP, Tsokos M, Rosenberg SA, Miettinen MM, Lee CC.
NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis.
Mod. Pathol. 25: 854-8, 2012.
9)  Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, van Rooij N, Linnemann C, van Buuren MM, Urbanus JH, Beltman JB, Thor Straten P, Li YF, Robbins PF, Besser MJ, Schachter J, Kenter GG, Dudley ME, Rosenberg SA, Haanen JB, Hadrup SR, Schumacher TN.
TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.
Oncoimmunology. 1: 409-418, 2012.
10)  Chinnasamy N, Wargo JA, Yu Z, Rao M, Frankel TL, Riley JP, Hong JJ, Parkhurst MR, Feldman SA, Schrump DS, Restifo NP, Robbins PF, Rosenberg SA, Morgan RA.
A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer.
J. Immunol. 186: 685-96, 2011.
11)  Dalet A, Robbins PF, Stroobant V, Vigneron N, Li YF, El-Gamil M, Hanada K, Yang JC, Rosenberg SA, Van den Eynde BJ.
An antigenic peptide produced by reverse splicing and double asparagine deamidation.
Proc. Natl. Acad. Sci. U.S.A. 108: E323-31, 2011.
12)  Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME.
Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T Cell Transfer Immunotherapy.
Clin Cancer Res. 17: 4550-7, 2011.
13)  Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR, Huang J, Klebanoff CA, Johnson LA, Kerkar SP, Yang S, Muranski P, Palmer DC, Scott CD, Morgan RA, Robbins PF, Rosenberg SA, Restifo NP.
Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy.
Blood. 117: 808-14, 2011.
14)  Huang J, Wang QJ, Yang S, Li YF, El-Gamil M, Rosenberg SA, Robbins PF.
Irradiation enhances human T-cell function by upregulating CD70 expression on antigen-presenting cells in vitro.
J. Immunother. 34: 327-35, 2011.
15)  Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA.
T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.
Mol. Ther. 19: 620-6, 2011.
16)  Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA.
Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1.
J. Clin. Oncol. 29: 917-24, 2011.
17)  Parkhurst MR, Joo J, Riley JP, Yu Z, Li Y, Robbins PF, Rosenberg SA.
Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells.
Clin. Cancer Res. 15: 169-80, 2009.
18)  Goff SL, Robbins PF, El-Gamil M, Rosenberg SA.
No correlation between clinical response to CTLA-4 blockade and presence of NY-ESO-1 antibody in patients with metastatic melanoma.
J. Immunother. 32: 884-5, 2009.
19)  Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D, Zheng Z, Hong JA, Downey S, Schrump DS, Rosenberg SA, Morgan RA.
Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression.
Cancer Immunol. Immunother. 58: 383-394, 2009.
20)  Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S, Zheng Z, Shelton TE, Matsuda K, Robbins PF, Morgan RA, Rosenberg SA.
Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2.
Hum. Gene Ther. 19: 496-510, 2008.
21)  Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA.
Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens.
J. Clin. Oncol. 26: 5233-9, 2008.
22)  Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME.
Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy.
J. Immunother. 31: 742-51, 2008.
23)  Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z, Xu H, Morgan RA, Feldman SA, Johnson LA, Bennett AD, Dunn SM, Mahon TM, Jakobsen BK, Rosenberg SA.
Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions.
J. Immunol. 180: 6116-31, 2008.
24)  Charo J, Robbins PF.
Contrasting effects of FLIPL overexpression in human T cells on activation-induced cell death and cytokine production.
J. Leukoc. Biol. 81: 1297-302, 2007.
25)  Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J, Robbins PF, Peng PD, Shen X, Gomes TJ, Dunbar CE, Munroe DJ, Stewart C, Cornetta K, Wangsa D, Ried T, Rosenberg SA, Morgan RA.
Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene.
Blood. 109: 5168-77, 2007.
26)  Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA.
Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond.
Cancer Res. 67: 3898-903, 2007.
27)  Zhao Y, Bennett AD, Zheng Z, Wang QJ, Robbins PF, Yu LY, Li Y, Molloy PE, Dunn SM, Jakobsen BK, Rosenberg SA, Morgan RA.
High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines.
J. Immunol. 179: 5845-54, 2007.
28)  Wang E, Voiculescu S, Le Poole IC, El-Gamil M, Li X, Sabatino M, Robbins PF, Nickoloff BJ, Marincola FM.
Clonal persistence and evolution during a decade of recurrent melanoma.
J. Invest. Dermatol. 126: 1372-7, 2006.
29)  Johnson LA, Heemskerk B, Powell DJ, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA.
Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes.
J. Immunol. 177: 6548-59, 2006.
30)  Huang J, Kerstann KW, Ahmadzadeh M, Li YF, El-Gamil M, Rosenberg SA, Robbins PF.
Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy.
J. Immunol. 176: 7726-35, 2006.
31)  Charo J, Finkelstein SE, Grewal N, Restifo NP, Robbins PF, Rosenberg SA.
Bcl-2 overexpression enhances tumor-specific T-cell survival.
Cancer Res. 65: 2001-8, 2005.
32)  Zhou X, Jun DY, Thomas AM, Huang X, Huang LQ, Mautner J, Mo W, Robbins PF, Pardoll DM, Jaffee EM.
Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte-macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine.
Cancer Res. 65: 1079-88, 2005.
33)  Zeng G, Aldridge ME, Wang Y, Pantuck AJ, Wang AY, Liu YX, Han Y, Yuan YH, Robbins PF, Dubinett SM, deKernion JB, Belldegrun AS.
Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker.
Int. J. Cancer. 114: 268-73, 2005.
34)  Zhou J, Dudley ME, Rosenberg SA, Robbins PF.
Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy.
J. Immunother. 28: 53-62, 2005.
35)  Zhao Y, Zheng Z, Robbins PF, Khong HT, Rosenberg SA, Morgan RA.
Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines.
J. Immunol. 174: 4415-23, 2005.
36)  Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF.
Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression.
J. Immunother. 28: 258-67, 2005.
37)  Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF.
Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy.
J. Immunol. 175: 7046-52, 2005.
38)  Hughes MS, Yu YY, Dudley ME, Zheng Z, Robbins PF, Li Y, Wunderlich J, Hawley RG, Moayeri M, Rosenberg SA, Morgan RA.
Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions.
Hum. Gene Ther. 16: 457-72, 2005.
39)  Powell DJ, Dudley ME, Robbins PF, Rosenberg SA.
Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy.
Blood. 105: 241-50, 2005.
40)  Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ, Rosenberg SA.
Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy.
J. Immunol. 173: 7125-30, 2004.
41)  Parkhurst MR, Riley JP, Igarashi T, Li Y, Robbins PF, Rosenberg SA.
Immunization of patients with the hTERT:540-548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressing telomerase.
Clin. Cancer Res. 10: 4688-98, 2004.
42)  Parkhurst MR, Riley JP, Robbins PF, Rosenberg SA.
Induction of CD4+ Th1 lymphocytes that recognize known and novel class II MHC restricted epitopes from the melanoma antigen gp100 by stimulation with recombinant protein.
J. Immunother. 27: 79-91, 2004.
43)  Zhou J, Dudley ME, Rosenberg SA, Robbins PF.
Selective growth, in vitro and in vivo, of individual T cell clones from tumor-infiltrating lymphocytes obtained from patients with melanoma.
J. Immunol. 173: 7622-9, 2004.
44)  Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF.
T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product.
J. Immunol. 172: 6057-64, 2004.
Click Here to View Collapsed Bibliography.

This page was last updated on 5/16/2013.