Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Weissman Website

Allan M. Weissman, M.D.

Selected Publications

1)  Metzger MB, Liang YH, Das R, Mariano J, Li S, Li J, Kostova Z, Byrd RA, Ji X, Weissman AM.
A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms.
Mol. Cell. 50: 516-27, 2013.
2)  Das R, Liang YH, Mariano J, Li J, Huang T, King A, Tarasov SG, Weissman AM, Ji X, Byrd RA.
Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine.
EMBO J. 2013.
3)  Tsai YC, Leichner GS, Pearce MM, Wilson GL, Wojcikiewicz RJ, Roitelman J, Weissman AM.
Differential Regulation of HMG-CoA Reductase and Insig-1 by Enzymes of the Ubiquitin-Proteasome System.
Mol. Biol. Cell. 23: 4484-94, 2012.
4)  Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, Glickman MH, Weissman AM.
Stress-Induced Phosphorylation and Proteasomal Degradation of Mitofusin 2 Facilitates Mitochondrial Fragmentation and Apoptosis.
Mol Cell. 47: 547-57, 2012.
5)  Weissman AM, Shabek N, Ciechanover A.
The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation.
Nat. Rev. Mol. Cell Biol. 12: 605-20, 2011.
6)  Byrd RA, Weissman AM.
Compact Parkin only: insights into the structure of an autoinhibited ubiquitin ligase.
EMBO J. 32: 2087-9, 2013.
7)  Metzger MB, Pruneda JN, Klevit RE, Weissman AM.
RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination.
Biochim. Biophys. Acta. 2013.
8)  Weissman AM.
Ubiquitin and drug discovery: challenges and opportunities.
Cell Biochem. Biophys. 67: 1-2, 2013.
9)  Tsai YC, Weissman AM.
A Ubiquitin-Binding Rhomboid Protease Aimed at ERADication.
Dev. Cell. 23: 454-6, 2012.
10)  Hristova VA, Stringer DK, Weissman AM.
Cullin RING ligases: glommed by glomulin.
Mol. Cell. 47: 331-2, 2012.
11)  Metzger MB, Hristova VA, Weissman AM.
HECT and RING finger families of E3 ubiquitin ligases at a glance.
J. Cell. Sci. 125: 531-7, 2012.
12)  Liu S, Chen Y, Li J, Huang T, Tarasov S, King A, Weissman AM, Byrd RA, Das R.
Promiscuous interactions of gp78 E3 ligase CUE domain with polyubiquitin chains.
Structure. 20: 2138-50, 2012.
13)  Tsai YC, Weissman AM.
Dissecting the diverse functions of the metastasis suppressor CD82/KAI1.
FEBS Lett. 585: 3166-73, 2011.
14)  Lipkowitz S, Weissman AM.
RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis.
Nat. Rev. Cancer. 11: 629-43, 2011.
15)  Cohen MM, Amiott EA, Day AR, Leboucher GP, Pryce EN, Glickman MH, McCaffery JM, Shaw JM, Weissman AM.
Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion.
J. Cell. Sci. 124: 1403-10, 2011.
16)  Tsai YC, Weissman AM.
Ubiquitylation in ERAD: reversing to go forward?.
PLoS Biol. 9: e1001038, 2011.
17)  Ishikura S, Weissman AM, Bonifacino JS.
Serine residues in the cytosolic tail of the T-cell antigen receptor {alpha}-chain mediate ubiquitination and ER-associated degradation of the unassembled protein.
J Biol Chem. 285: 23916-24, 2010.
18)  Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, Weissman AM.
Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system.
Proc. Natl. Acad. Sci. U.S.A. 107: 16554-9, 2010.
19)  Tsai YC, Weissman AM.
The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer.
Genes Cancer. 1: 764-778, 2010.
20)  Metzger MB, Weissman AM.
Working on a chain: E3s ganging up for ubiquitylation.
Nat. Cell Biol. 12: 1124-6, 2010.
21)  Amiott EA, Cohen MM, Saint-Georges Y, Weissman AM, Shaw JM.
A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover.
Mol. Biol. Cell. 20: 5026-35, 2009.
22)  Kostova Z, Mariano J, Scholz S, Koenig C, Weissman AM.
A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation.
J. Cell. Sci. 122: 1374-81, 2009.
23)  Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, Li J, Tarasov SG, McFeeters RL, Altieri AS, Ji X, Byrd RA, Weissman AM.
Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78.
Mol. Cell. 34: 674-85, 2009.
24)  Martin DN, Boersma BJ, Yi M, Reimers M, Howe TM, Yfantis HG, Tsai YC, Williams EH, Lee DH, Stephens RM, Weissman AM, Ambs S.
Differences in the tumor microenvironment between African-American and European-American breast cancer patients.
PLoS ONE. 4: e4531, 2009.
25)  Shmueli A, Tsai YC, Yang M, Braun MA, Weissman AM.
Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum.
Biochem. Biophys. Res. Commun. 390: 758-62, 2009.
26)  Clement JA, Kitagaki J, Yang Y, Saucedo CJ, O'Keefe BR, Weissman AM, McKee TC, McMahon JB.
Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53.
Bioorg. Med. Chem. 16: 10022-8, 2008.
27)  Ding W, Li C, Hu T, Graves-Deal R, Fotia AB, Weissman AM, Coffey RJ.
EGF receptor-independent action of TGF-alpha protects Naked2 from AO7-mediated ubiquitylation and proteasomal degradation.
Proc. Natl. Acad. Sci. U.S.A. 105: 13433-8, 2008.
28)  Weissman AM.
How much REST is enough?.
Cancer Cell. 13: 381-3, 2008.
29)  Sasiela CA, Stewart DH, Kitagaki J, Safiran YJ, Yang Y, Weissman AM, Oberoi P, Davydov IV, Goncharova E, Beutler JA, McMahon JB, O'Keefe BR.
Identification of inhibitors for MDM2 ubiquitin ligase activity from natural product extracts by a novel high-throughput electrochemiluminescent screen.
J Biomol Screen. 13: 229-37, 2008.
30)  Weissman AM, Yang Y, Kitagaki J, Sasiela CA, Beutler JA, O'Keefe BR.
Inhibiting Hdm2 and ubiquitin-activating enzyme: targeting the ubiquitin conjugating system in cancer.
Ernst Schering Found Symp Proc. 171-90, 2008.
31)  Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM.
Nedd4 Mediates Agonist-dependent Ubiquitination, Lysosomal Targeting, and Degradation of the {beta}2-Adrenergic Receptor.
J. Biol. Chem. 283: 22166-76, 2008.
32)  Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM.
Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2.
Mol. Cancer Ther. 7: 2445-54, 2008.
33)  Cohen MM, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM.
Ubiquitin-Proteasome-dependent Degradation of a Mitofusin, a Critical Regulator of Mitochondrial Fusion.
Mol. Biol. Cell. 19: 2457-64, 2008.
34)  Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CC, Kenten JH, Beutler JA, Vousden KH, Weissman AM.
Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics.
Cancer Res. 67: 9472-81, 2007.
35)  Brauweiler A, Lorick KL, Lee JP, Tsai YC, Chan D, Weissman AM, Drabkin HA, Gemmill RM.
RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene.
Oncogene. 26: 2263-71, 2007.
36)  Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM.
The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation.
Nat. Med. 13: 1504-9, 2007.
37)  Kostova Z, Tsai YC, Weissman AM.
Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation.
Semin Cell Dev Biol. 18: 770-9, 2007.
38)  Mani A, Oh AS, Bowden ET, Lahusen T, Lorick KL, Weissman AM, Schlegel R, Wellstein A, Riegel AT.
E6AP Mediates Regulated Proteasomal Degradation of the Nuclear Receptor Coactivator Amplified in Breast Cancer 1 in Immortalized Cells.
Cancer Res. 66: 8680-6, 2006.
39)  Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH.
Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5.
Nat. Struct. Mol. Biol. 13: 264-71, 2006.
40)  Lorick KL, Yang Y, Jensen JP, Iwai K, Weissman AM.
Studies of the ubiquitin proteasome system.
Curr Protoc Cell Biol. Chapter 15: Unit 15.9, 2006.
41)  Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM.
The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site.
Proc. Natl. Acad. Sci. U.S.A. 103: 341-6, 2006.
42)  Mattera R, Tsai YC, Weissman AM, Bonifacino JS.
The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain.
J. Biol. Chem. 281: 6874-83, 2006.
43)  Lorick KL, Tsai YC, Yang Y, Weissman AM.
Mayer J, Ciechanover A, Rechsteiner M, eds.
RING fingers and relatives: determinators of protein fate. In: Protein Degradation. Volume 1.
Zurich: Wiley-VCH; 2005. p. 44-101 [Book Chapter]
44)  Yang Y, Lorick KL, Jensen JP, Weissman AM.
Expression and evaluation of RING finger proteins.
Meth. Enzymol. 398: 103-12, 2005.
45)  Lorick KL, Jensen JP, Weissman AM.
Expression, purification, and properties of the Ubc4/5 family of E2 enzymes.
Meth. Enzymol. 398: 54-68, 2005.
46)  Megumi Y, Miyauchi Y, Sakurai H, Nobeyama H, Lorick K, Nakamura E, Chiba T, Tanaka K, Weissman AM, Kirisako T, Ogawa O, Iwai K.
Multiple roles of Rbx1 in the VBC-Cul2 ubiquitin ligase complex.
Genes Cells. 10: 679-91, 2005.
47)  Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH.
Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells.
Cancer Cell. 7: 547-59, 2005.
48)  Fang S, Weissman AM.
A field guide to ubiquitylation.
Cell Mol Life Sci. 61: 1546-61, 2004.
49)  Davydov IV, Woods D, Safiran YJ, Oberoi P, Fearnhead HO, Fang S, Jensen JP, Weissman AM, Kenten JH, Vousden KH.
Assay for ubiquitin ligase activity: high-throughput screen for inhibitors of HDM2.
J Biomol Screen. 9: 695-703, 2004.
50)  Yang Y, Li CC, Weissman AM.
Regulating the p53 system through ubiquitination.
Oncogene. 23: 2096-106, 2004.
51)  Häkli M, Lorick KL, Weissman AM, Jänne OA, Palvimo JJ.
Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity.
FEBS Lett. 560: 56-62, 2004.
52)  Plafker SM, Plafker KS, Weissman AM, Macara IG.
Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import.
J Cell Biol. 167: 649-59, 2004.
53)  Xu L, Yang L, Moitra PK, Hashimoto K, Rallabhandi P, Kaul S, Meroni G, Jensen JP, Weissman AM, D'Arpa P.
BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta.
Exp Cell Res. 288: 84-93, 2003.
54)  Doong H, Rizzo K, Fang S, Kulpa V, Weissman AM, Kohn EC.
CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins.
J Biol Chem. 278: 28490-500, 2003.
55)  Webster JM, Tiwari S, Weissman AM, Wojcikiewicz RJ.
Inositol 1,4,5-trisphosphate receptor ubiquitination is mediated by mammalian Ubc7, a component of the endoplasmic reticulum-associated degradation pathway, and is inhibited by chelation of intracellular Zn2+.
J Biol Chem. 278: 38238-46, 2003.
56)  Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB.
Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta.
Dev Cell. 4: 67-82, 2003.
57)  Liang JS, Kim T, Fang S, Yamaguchi J, Weissman AM, Fisher EA, Ginsberg HN.
Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells.
J Biol Chem. 278: 23984-8, 2003.
58)  Fang S, Lorick KL, Jensen JP, Weissman AM.
RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer.
Semin Cancer Biol. 13: 5-14, 2003.
59)  Weissman AM.
Solubilization of lymphocytes.
Curr Protoc Immunol. Chapter 8: Unit 8.1A, 2003.
60)  Magnifico A, Ettenberg S, Yang C, Mariano J, Tiwari S, Fang S, Lipkowitz S, Weissman AM.
WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation.
J Biol Chem. 278: 43169-77, 2003.
61)  Murillas R, Simms KS, Hatakeyama S, Weissman AM, Kuehn MR.
Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase.
J Biol Chem. 277: 2897-907, 2002.
62)  Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH.
SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.
Nature. 419: 167-70, 2002.
63)  Ettenberg SA, Magnifico A, Cuello M, Nau MM, Rubinstein YR, Yarden Y, Weissman AM, Lipkowitz S.
Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex.
J Biol Chem. 276: 27677-84, 2001.
64)  Tiwari S, Weissman AM.
Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s).
J Biol Chem. 276: 16193-200, 2001.
65)  Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM.
The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum.
Proc Natl Acad Sci U S A. 98: 14422-7, 2001.
66)  Weissman AM.
Themes and variations on ubiquitylation.
Nat Rev Mol Cell Biol. 2: 169-78, 2001.
67)  Weissman AM.
Detecting ubiquitinated T-cell antigen receptor subunits by immunoblotting.
Methods Mol Biol. 134: 283-7, 2000.
68)  Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM.
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53.
J Biol Chem. 275: 8945-51, 2000.
69)  Joazeiro CA, Weissman AM.
RING finger proteins: mediators of ubiquitin ligase activity.
Cell. 102: 549-52, 2000.
70)  Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD.
Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli.
Science. 288: 874-7, 2000.
71)  Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM.
RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination.
Proc Natl Acad Sci U S A. 96: 11364-9, 1999.
72)  Rellahan BL, Jensen JP, Howcroft TK, Singer DS, Bonvini E, Weissman AM.
Elf-1 regulates basal expression from the T cell antigen receptor zeta-chain gene promoter.
J. Immunol. 160: 2794-801, 1998.
73)  Iwai K, Drake SK, Wehr NB, Weissman AM, LaVaute T, Minato N, Klausner RD, Levine RL, Rouault TA.
Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins.
Proc. Natl. Acad. Sci. U.S.A. 95: 4924-8, 1998.
74)  Yang M, Omura S, Bonifacino JS, Weissman AM.
Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes.
J. Exp. Med. 187: 835-46, 1998.
75)  Bonifacino JS, Weissman AM.
Ubiquitin and the control of protein fate in the secretory and endocytic pathways.
Annu. Rev. Cell Dev. Biol. 14: 19-57, 1998.
76)  D'Oro U, Vacchio MS, Weissman AM, Ashwell JD.
Activation of the Lck tyrosine kinase targets cell surface T cell antigen receptors for lysosomal degradation.
Immunity. 7: 619-28, 1997.
77)  Weissman AM.
Regulating protein degradation by ubiquitination.
Immunol. Today. 18: 189-98, 1997.
78)  Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW.
Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin.
J. Biol. Chem. 272: 24735-8, 1997.
79)  Hatakeyama S, Jensen JP, Weissman AM.
Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases.
J. Biol. Chem. 272: 15085-92, 1997.
80)  Yang M, Ellenberg J, Bonifacino JS, Weissman AM.
The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum.
J. Biol. Chem. 272: 1970-5, 1997.
81)  Cenciarelli C, Wilhelm KG, Guo A, Weissman AM.
T cell antigen receptor ubiquitination is a consequence of receptor-mediated tyrosine kinase activation.
J. Biol. Chem. 271: 8709-13, 1996.
82)  Jensen JP, Bates PW, Yang M, Vierstra RD, Weissman AM.
Identification of a family of closely related human ubiquitin conjugating enzymes.
J. Biol. Chem. 270: 30408-14, 1995.
83)  Hou D, Cenciarelli C, Jensen JP, Nguygen HB, Weissman AM.
Activation-dependent ubiquitination of a T cell antigen receptor subunit on multiple intracellular lysines.
J. Biol. Chem. 269: 14244-7, 1994.
84)  Niklinska BB, Hou D, June C, Weissman AM, Ashwell JD.
CD45 tyrosine phosphatase activity and membrane anchoring are required for T-cell antigen receptor signaling.
Mol. Cell. Biol. 14: 8078-84, 1994.
85)  Weissman AM.
The T-cell antigen receptor: a multisubunit signaling complex.
Chem. Immunol. 59: 1-18, 1994.
86)  Rellahan BL, Jensen JP, Weissman AM.
Transcriptional regulation of the T cell antigen receptor zeta subunit: identification of a tissue-restricted promoter.
J. Exp. Med. 180: 1529-34, 1994.
87)  Volarević S, Niklinska BB, Burns CM, June CH, Weissman AM, Ashwell JD.
Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains.
Science. 260: 541-4, 1993.
88)  Jensen JP, Cenciarelli C, Hou D, Rellahan BL, Dean M, Weissman AM.
T cell antigen receptor-eta subunit. Low levels of expression and limited cross-species conservation.
J. Immunol. 150: 122-30, 1993.
89)  Gotlieb WH, Bristol LA, Weissman AM, Durum SK, Takács L.
Upregulation of T cell receptor gamma chain transcription by interleukin-2.
Cell. Immunol. 151: 345-55, 1993.
90)  Cenciarelli C, Hou D, Hsu KC, Rellahan BL, Wiest DL, Smith HT, Fried VA, Weissman AM.
Activation-induced ubiquitination of the T cell antigen receptor.
Science. 257: 795-7, 1992.
91)  Cenciarelli C, Hohman RJ, Atkinson TP, Gusovsky F, Weissman AM.
Evidence for GTP-binding protein involvement in the tyrosine phosphorylation of the T cell receptor zeta chain.
J. Biol. Chem. 267: 14527-30, 1992.
92)  Kosugi A, Weissman AM, Ogata M, Hamaoka T, Fujiwara H.
Instability of assembled T-cell receptor complex that is associated with rapid degradation of zeta chains in immature CD4+CD8+ thymocytes.
Proc. Natl. Acad. Sci. U.S.A. 89: 9494-8, 1992.
93)  Frank SJ, Cenciarelli C, Niklinska BB, Letourneur F, Ashwell JD, Weissman AM.
Mutagenesis of T cell antigen receptor zeta chain tyrosine residues. Effects on tyrosine phosphorylation and lymphokine production.
J. Biol. Chem. 267: 13656-60, 1992.
94)  Jensen JP, Hou D, Ramsburg M, Taylor A, Dean M, Weissman AM.
Organization of the human T cell receptor zeta/eta gene and its genetic linkage to the Fc gamma RII-Fc gamma RIII gene cluster.
J. Immunol. 148: 2563-71, 1992.
95)  Gotlieb WH, Takacs L, Finch LR, Kopp W, Weissman AM, Durum SK.
CD8 gamma delta cells: presence in the adult rat thymus and generation in vitro from CD4-/CD8- thymocytes in the presence of interleukin 2.
Cytokine. 3: 598-608, 1991.
96)  O'Shea JJ, Weissman AM, Kennedy IC, Ortaldo JR.
Engagement of the natural killer cell IgG Fc receptor results in tyrosine phosphorylation of the zeta chain.
Proc. Natl. Acad. Sci. U.S.A. 88: 350-4, 1991.
97)  Zacharchuk CM, Merćep M, June CH, Weissman AM, Ashwell JD.
Variations in thymocyte susceptibility to clonal deletion during ontogeny. Implications for neonatal tolerance.
J. Immunol. 147: 460-5, 1991.
98)  Merćep M, Weissman AM, Frank SJ, Klausner RD, Ashwell JD.
Activation-driven programmed cell death and T cell receptor zeta eta expression.
Science. 246: 1162-5, 1989.
99)  Orloff DG, Frank SJ, Robey FA, Weissman AM, Klausner RD.
Biochemical characterization of the eta chain of the T-cell receptor. A unique subunit related to zeta.
J. Biol. Chem. 264: 14812-7, 1989.
100)  Bonifacino JS, Suzuki CK, Lippincott-Schwartz J, Weissman AM, Klausner RD.
Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: intrinsic sensitivity and the role of subunit assembly.
J. Cell Biol. 109: 73-83, 1989.
101)  Weissman AM, Frank SJ, Orloff DG, Merćep M, Ashwell JD, Klausner RD.
Role of the zeta chain in the expression of the T cell antigen receptor: genetic reconstitution studies.
EMBO J. 8: 3651-6, 1989.
102)  Weissman AM, Bonifacino JS, Klausner RD, Samelson LE, O'Shea JJ.
T cell antigen receptor: structure, assembly and function.
Year Immunol. 4: 74-93, 1989.
103)  Klausner RD, Weissman AM, Baniyash M, Bonifacino JS, Samelson LE.
The role of the zeta chain in the expression, structure and function of the T cell receptor.
Adv. Exp. Med. Biol. 254: 21-4, 1989.
104)  Sussman JJ, Bonifacino JS, Lippincott-Schwartz J, Weissman AM, Saito T, Klausner RD, Ashwell JD.
Failure to synthesize the T cell CD3-zeta chain: structure and function of a partial T cell receptor complex.
Cell. 52: 85-95, 1988.
105)  Weissman AM, Hou D, Orloff DG, Modi WS, Seuanez H, O'Brien SJ, Klausner RD.
Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex.
Proc. Natl. Acad. Sci. U.S.A. 85: 9709-13, 1988.
106)  Weissman AM, Baniyash M, Hou D, Samelson LE, Burgess WH, Klausner RD.
Molecular cloning of the zeta chain of the T cell antigen receptor.
Science. 239: 1018-21, 1988.
107)  Weissman AM, Ross P, Luong ET, Garcia-Morales P, Jelachich ML, Biddison WE, Klausner RD, Samelson LE.
Tyrosine phosphorylation of the human T cell antigen receptor zeta-chain: activation via CD3 but not CD2.
J. Immunol. 141: 3532-6, 1988.
108)  Minami Y, Weissman AM, Samelson LE, Klausner RD.
Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor.
Proc. Natl. Acad. Sci. U.S.A. 84: 2688-92, 1987.
109)  Weissman AM, Samelson LE, Klausner RD.
A new subunit of the human T-cell antigen receptor complex.
Nature. 324: 480-2, 1986.
110)  Samelson LE, Patel MD, Weissman AM, Harford JB, Klausner RD.
Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor.
Cell. 46: 1083-90, 1986.
111)  Samelson LE, Weissman AM, Robey FA, Berkower I, Klausner RD.
Characterization of an anti-peptide antibody that recognizes the murine analogue of the human T cell antigen receptor-T3 delta-chain.
J. Immunol. 137: 3254-8, 1986.
112)  Weissman AM, Klausner RD, Rao K, Harford JB.
Exposure of K562 cells to anti-receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor.
J. Cell Biol. 102: 951-8, 1986.
113)  Weissman AM, Harford JB, Svetlik PB, Leonard WL, Depper JM, Waldmann TA, Greene WC, Klausner RD.
Only high-affinity receptors for interleukin 2 mediate internalization of ligand.
Proc. Natl. Acad. Sci. U.S.A. 83: 1463-6, 1986.
Click Here to View Collapsed Bibliography.

This page was last updated on 12/3/2013.