Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Day Website

Patricia M. Day, Ph.D.

Selected Publications

1)  Day PM, Schelhaas M.
Concepts of papillomavirus entry into host cells.
Curr Opin Virol. 4C: 24-31, 2014.
2)  Handisurya A, Day PM, Thompson CD, Buck CB, Pang YY, Lowy DR, Schiller JT.
Characterization of Mus musculus papillomavirus 1 infection in situ reveals an unusual pattern of late gene expression and capsid protein localization.
J. Virol. 87: 13214-25, 2013.
3)  Day PM, Thompson CD, Schowalter RM, Lowy DR, Schiller JT.
Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection.
J. Virol. 87: 3862-70, 2013.
4)  Buck CB, Day PM, Trus BL.
The papillomavirus major capsid protein L1.
Virology. 445: 169-74, 2013.
5)  Day PM, Pang YY, Kines RC, Thompson CD, Lowy DR, Schiller JT.
A human papillomavirus (HPV) in vitro neutralization assay that recapitulates the in vitro process of infection provides a sensitive measure of HPV L2 infection-inhibiting antibodies.
Clin. Vaccine Immunol. 19: 1075-82, 2012.
6)  Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, Schiller JT, Helenius A.
Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis.
PLoS Pathog. 8: e1002657, 2012.
7)  Çuburu N, Graham BS, Buck CB, Kines RC, Pang YY, Day PM, Lowy DR, Schiller JT.
Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses.
J. Clin. Invest. 122: 4606-20, 2012.
8)  Handisurya A, Day PM, Thompson CD, Buck CB, Kwak K, Roden RB, Lowy DR, Schiller JT.
Murine skin and vaginal mucosa are similarly susceptible to infection by pseudovirions of different papillomavirus classifications and species.
Virology. 433: 385-94, 2012.
9)  Schiller JT, Day PM, Kines RC.
Current understanding of the mechanism of HPV infection.
Gynecol. Oncol. 118: S12-7, 2010.
10)  Asnaghi L, Vass WC, Quadri R, Day PM, Qian X, Braverman R, Papageorge AG, Lowy DR.
E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases.
Oncogene. 29: 2760-71, 2010.
11)  Day PM, Kines RC, Thompson CD, Jagu S, Roden RB, Lowy DR, Schiller JT.
In vivo mechanisms of vaccine-induced protection against HPV infection.
Cell Host Microbe. 8: 260-70, 2010.
12)  Karanam B, Peng S, Li T, Buck C, Day PM, Roden RB.
Papillomavirus infection requires gamma secretase.
J. Virol. 84: 10661-70, 2010.
13)  Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM.
Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus.
J. Virol. 83: 2067-74, 2009.
14)  Gambhira R, Jagu S, Karanam B, Day PM, Roden R.
Role of L2 cysteines in papillomavirus infection and neutralization.
Virol. J. 6: 176, 2009.
15)  Sapp M, Day PM.
Structure, attachment and entry of polyoma- and papillomaviruses.
Virology. 384: 400-9, 2009.
16)  Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM.
The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding.
Proc. Natl. Acad. Sci. U.S.A. 106: 20458-63, 2009.
17)  Day PM, Schiller JT.
The role of furin in papillomavirus infection.
Future Microbiol. 4: 1255-62, 2009.
18)  Day PM, Lowy DR, Schiller JT.
Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids.
J. Virol. 82: 12565-8, 2008.
19)  Schelhaas M, Ewers H, Rajamäki ML, Day PM, Schiller JT, Helenius A.
Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions.
PLoS Pathog. 4: e1000148, 2008.
20)  Day PM, Gambhira R, Roden RB, Lowy DR, Schiller JT.
Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies.
J. Virol. 82: 4638-46, 2008.
21)  Day PM, Thompson CD, Buck CB, Pang YY, Lowy DR, Schiller JT.
Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition.
J. Virol. 81: 8784-92, 2007.
22)  Kämper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M.
A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes.
J. Virol. 80: 759-68, 2006.
23)  Richards RM, Lowy DR, Schiller JT, Day PM.
Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection.
Proc. Natl. Acad. Sci. U.S.A. 103: 1522-7, 2006.
24)  Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT.
Human alpha-defensins block papillomavirus infection.
Proc. Natl. Acad. Sci. U.S.A. 103: 1516-21, 2006.
25)  Day PM, Baker CC, Lowy DR, Schiller JT.
Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression.
Proc. Natl. Acad. Sci. U.S.A. 101: 14252-7, 2004.
26)  Yang R, Day PM, Yutzy WH, Lin KY, Hung CF, Roden RB.
Cell surface-binding motifs of L2 that facilitate papillomavirus infection.
J. Virol. 77: 3531-41, 2003.
27)  Lenz P, Thompson CD, Day PM, Bacot SM, Lowy DR, Schiller JT.
Interaction of papillomavirus virus-like particles with human myeloid antigen-presenting cells.
Clin. Immunol. 106: 231-7, 2003.
28)  Day PM, Lowy DR, Schiller JT.
Papillomaviruses infect cells via a clathrin-dependent pathway.
Virology. 307: 1-11, 2003.
29)  Young PJ, Day PM, Zhou J, Androphy EJ, Morris GE, Lorson CL.
A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy.
J. Biol. Chem. 277: 2852-9, 2002.
30)  Okun MM, Day PM, Greenstone HL, Booy FP, Lowy DR, Schiller JT, Roden RB.
L1 interaction domains of papillomavirus l2 necessary for viral genome encapsidation.
J. Virol. 75: 4332-42, 2001.
31)  Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, Schiller JT.
Papillomavirus-like particles induce acute activation of dendritic cells.
J. Immunol. 166: 5346-55, 2001.
32)  Roden RB, Day PM, Bronzo BK, Yutzy WH, Yang Y, Lowy DR, Schiller JT.
Positively charged termini of the L2 minor capsid protein are necessary for papillomavirus infection.
J. Virol. 75: 10493-7, 2001.
33)  Fedele M, Benvenuto G, Pero R, Majello B, Battista S, Lembo F, Vollono E, Day PM, Santoro M, Lania L, Bruni CB, Fusco A, Chiariotti L.
A novel member of the BTB/POZ family, PATZ, associates with the RNF4 RING finger protein and acts as a transcriptional repressor.
J. Biol. Chem. 275: 7894-901, 2000.
34)  Antón LC, Schubert U, Bacík I, Princiotta MF, Wearsch PA, Gibbs J, Day PM, Realini C, Rechsteiner MC, Bennink JR, Yewdell JW.
Intracellular localization of proteasomal degradation of a viral antigen.
J. Cell Biol. 146: 113-24, 1999.
35)  Day PM, Roden RB, Lowy DR, Schiller JT.
The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains.
J. Virol. 72: 142-50, 1998.
36)  Day PM, Yewdell JW, Porgador A, Germain RN, Bennink JR.
Direct delivery of exogenous MHC class I molecule-binding oligopeptides to the endoplasmic reticulum of viable cells.
Proc. Natl. Acad. Sci. U.S.A. 94: 8064-9, 1997.
37)  Day PM, Esquivel F, Lukszo J, Bennink JR, Yewdell JW.
Effect of TAP on the generation and intracellular trafficking of peptide-receptive major histocompatibility complex class I molecules.
Immunity. 2: 137-47, 1995.
38)  Day PM, Frelinger JA.
Differential expression of Q4 proteins (Qb-1) in fibroblasts and lymphocytes.
J. Immunol. 147: 3427-33, 1991.
Click Here to View Collapsed Bibliography.

This page was last updated on 3/31/2014.