Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Wickner Website

Sue Wickner, Ph.D.

Selected Publications

1)  Doyle SM, Genest O, Wickner S.
Protein rescue from aggregates by powerful molecular chaperone machines.
Nat. Rev. Mol. Cell Biol. 14: 617-29, 2013.
2)  Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL, Agard DA, Masison DC, Wickner S.
Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast.
Mol. Cell. 49: 464-73, 2013.
3)  Doyle SM, Hoskins JR, Wickner S.
DnaK-dependent disaggregation by Caseinolytic Peptidase B, ClpB, mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine.
J Biol Chem. 287: 28470-9, 2012.
4)  Zhang T, Ploetz EA, Nagy M, Doyle SM, Wickner S, Smith PE, Zolkiewski M.
Flexible connection of the N-terminal domain in ClpB modulates substrate binding and the aggregate reactivation efficiency.
Proteins. 80: 2758-68, 2012.
5)  Reidy M, Miot M, Masison DC.
Prokaryotic Chaperones Support Yeast Prions and Thermotolerance and Define Disaggregation Machinery Interactions.
Genetics. 192: 185-93, 2012.
6)  Camberg JL, Wickner S.
Regulated proteolysis as a force to control the cell cycle.
Structure. 20: 1128-30, 2012.
7)  Evans ML, Schmidt JC, Ilbert M, Doyle SM, Quan S, Bardwell JC, Jakob U, Wickner S, Chapman MR.
E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly.
Prion. 5: 323-34, 2011.
8)  Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S.
Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling.
Proc. Natl. Acad. Sci. U.S.A. 108: 8206-11, 2011.
9)  Miot M, Reidy M, Doyle SM, Hoskins JR, Johnston DM, Genest O, Vitery MC, Masison DC, Wickner S.
Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation.
Proc. Natl. Acad. Sci. U.S.A. 108: 6915-20, 2011.
10)  Camberg JL, Hoskins JR, Wickner S.
The interplay of ClpXP with the cell division machinery in Escherichia coli.
J. Bacteriol. 193: 1911-8, 2011.
11)  Camberg JL, Hoskins JR, Wickner S.
ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics.
Proc. Natl. Acad. Sci. U.S.A. 106(26): 10614-9, 2009.
12)  Hoskins JR, Doyle SM, Wickner S.
Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein.
Proc. Natl. Acad. Sci. U.S.A. 106: 22233-8, 2009.
13)  Doyle SM, Wickner S.
Hsp104 and ClpB: protein disaggregating machines.
Trends Biochem. Sci. 34: 40-8, 2009.
14)  Chenoweth MR, Wickner S.
Complex regulation of the DnaJ homolog CbpA by the global regulators sigmaS and Lrp, by the specific inhibitor CbpM, and by the proteolytic degradation of CbpM.
J. Bacteriol. 190: 5153-61, 2008.
15)  Doyle SM, Shorter J, Zolkiewski M, Hoskins JR, Lindquist S, Wickner S.
Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity.
Nat. Struct. Mol. Biol. 14: 114-22, 2007.
16)  Doyle SM, Hoskins JR, Wickner S.
Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
Proc. Natl. Acad. Sci. U.S.A. 104: 11138-44, 2007.
17)  Chenoweth MR, Trun N, Wickner S.
In vivo modulation of a DnaJ homolog, CbpA, by CbpM.
J. Bacteriol. 189: 3635-8, 2007.
18)  Bird JG, Sharma S, Roshwalb SC, Hoskins JR, Wickner S.
Functional analysis of CbpA, a DnaJ homolog and nucleoid-associated DNA-binding protein.
J. Biol. Chem. 281: 34349-56, 2006.
19)  Bougdour A, Wickner S, Gottesman S.
Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli.
Genes Dev. 20: 884-97, 2006.
20)  Johnston D, Tavano C, Wickner S, Trun N.
Specificity of DNA binding and dimerization by CspE from Escherichia coli.
J. Biol. Chem. 281: 40208-15, 2006.
21)  Hoskins JR, Wickner S.
Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP.
Proc. Natl. Acad. Sci. U.S.A. 103: 909-14, 2006.
22)  Sharma S, Hoskins JR, Wickner S.
Binding and Degradation of heterodimeric substrates by ClpAP and ClpXP.
J. Biol. Chem. 280: 5449-55, 2005.
23)  Chae C, Sharma S, Hoskins JR, Wickner S.
CbpA, a DnaJ homolog, is a DnaK co-chaperone and its activity is modulated by CbpM.
J. Biol. Chem. 279: 33147-33153, 2004.
24)  Wickner S, Hoskins J.
Chaperones, Molecular.
Encyclopedia of Biological Chemistry. 1: 387-392, 2004.
25)  Sharma S, Sathyanarayana BK, Bird JG, Hoskins JR, Lee B, Wickner S.
Plasmid P1 RepA is homologous to the F plasmid RepE class of initiators.
J Biol Chem. 279: 6027-6034, 2004.
26)  Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S.
ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence.
Proc Natl Acad Sci U S A. 99: 11037-42, 2002.
27)  Kim SY, Sharma S, Hoskins JR, Wickner S.
Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA.
J Biol Chem. 277: 44778-83, 2002.
28)  Hoskins JR, Sharma S, Sathyanarayana BK, Wickner S.
Clp ATPases and their role in protein unfolding and degradation.
Adv Protein Chem. 59: 413-429, 2001.
29)  Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S.
The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
Genes Dev. 15: 627-37, 2001.
30)  Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC.
Translocation pathway of protein substrates in ClpAP protease.
Proc Nat Acad Sci USA. 98: 4328-4333, 2001.
31)  Hoskins JR, Singh SK, Maurizi MR, Wickner S.
Protein binding and unfolding be the chaperone ClpA and degradation by the protease ClpAP.
Proc Natl Acad Sci USA. 97: 8892-8897, 2000.
32)  Hoskins JR, Kim SY, Wickner S.
Substrate recognition by the ClpA chaperone component of ClpAP protease.
J Biol Chem. 275: 35361-35367, 2000.
33)  Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR.
Unfolding and internalization of proteins by ClpXP and ClpAP proteases.
Proc Natl Acad Sci USA. 97: 8898-8903, 2000.
34)  Wickner S, Maurizi MR, Gottesman S.
Posttranslational quality control: folding, refolding, and degrading proteins.
Science. 286: 1888-93, 1999.
Click Here to View Collapsed Bibliography.

This page was last updated on 12/12/2013.