Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health www.cancer.gov
CCR - For Our Staff| Home |

Our Science – Maurizi Website

Michael Maurizi, Ph.D.

Selected Publications

1)  Maurizi MR, Stan G.
ClpX shifts into high gear to unfold stable proteins.
Cell. 155: 502-4, 2013.
[Journal]
2)  Humbard MA, Surkov S, De Donatis GM, Jenkins L, Maurizi MR.
The N-degradome of escherichia coli: limited proteolysis in vivo generates a large pool of proteins bearing N-degrons.
J. Biol. Chem. 2013.
[Journal]
3)  Kang JH, Chang YC, Maurizi MR.
4-O-Carboxymethyl Ascochlorin Causes ER Stress and Induced Autophagy in Human Hepatocellular Carcinoma Cells.
J. Biol. Chem. 287: 15661-71, 2012.
[Journal]
4)  Derrien B, Majeran W, Effantin G, Ebenezer J, Friso G, van Wijk KJ, Steven AC, Maurizi MR, Vallon O.
The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features.
Plant Mol. Biol. 80: 189-202, 2012.
[Journal]
5)  Maurizi M.
Rawlings N, Salvesen G, eds.
Endopeptidase Clp. In: Handbook of Proteolytic Enzymes.
London: Elsevier; 2011. In Press. [Book Chapter]
6)  De Donatis GM, Singh SK, Viswanathan S, Maurizi MR.
A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer.
J Biol Chem. 210: 8771-81, 2010.
[Journal]
7)  Li D, Chung YS, Gloyd M, Joseph E, Ghirlando R, Wright GD, Cheng Y, Maurizi MR, Guarne A, Ortega J.
Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP.
Chem. Biol. 17: 959-69, 2010.
[Journal]
8)  Effantin G, Maurizi MR, Steven AC.
Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase.
J. Biol. Chem. 285: 14834-40, 2010.
[Journal]
9)  Cha SS, An YA, Lee CR, Lee HS, Kim YG, Kim SJ, Kwon KK, De Donatis GM, Lee JH, Maurizi MR, Kang SG.
Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber.
EMBO J. 29: 3520-30, 2010.
[Journal]
10)  Effantin G, Ishikawa T, De Donatis GM, Maurizi MR, Steven AC.
Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations.
Structure. 18: 553-62, 2010.
[Journal]
11)  Li M, Gustchina A, Rasulova FS, Melnikov EE, Maurizi MR, Rotanova TV, Dauter Z, Wlodawer A.
Structure of the N-terminal fragment of Escherichia coli Lon protease.
Acta Crystallogr. D Biol. Crystallogr. 66: 865-73, 2010.
[Journal]
12)  Maurizi M.
Structure and function of ATP-dependent Clp proteases. In: ATP-Dependent Proteases in Biological Regulation.
Kerala: Research Signposts; 2008. p. 41-86 [Book Chapter]
13)  Lies M, Maurizi MR.
Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli.
J. Biol. Chem. 283: 22918-29, 2008.
[Journal]
14)  Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, Braun S, Maurizi MR, Suzuki CK, Oppenheim AB, Orly J.
Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors.
Mol Endocrinol. 21: 2164-77, 2007.
[Journal]
15)  Szyk A, Maurizi MR.
Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site.
J Struct Biol. 156: 165-74, 2006.
[Journal]
16)  Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A.
Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains.
Protein Sci. 15: 1815-28, 2006.
[Journal]
17)  Li M, Rasulova F, Melnikov EE, Rotanova TV, Gustchina A, Maurizi MR, Wlodawer A.
Crystal structure of the N-terminal domain of E. coli Lon protease.
Protein Sci. 14: 2895-900, 2005.
[Journal]
18)  Kang SG, Dimitrova MN, Ortega J, Ginsburg A, Maurizi MR.
Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX.
J. Biol. Chem. 280: 35424-32, 2005.
[Journal]
19)  Piszczek G, Rozycki J, Singh SK, Ginsburg A, Maurizi MR.
The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer.
J Biol Chem. 280: 12221-30, 2005.
[Journal]
20)  Ortega J, Lee HS, Maurizi MR, Steven AC.
ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
J. Struct. Biol. 146: 217-226, 2004.
[Journal]
21)  Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A.
Crystal structure of the AAA(+) alpha domain of E. coli Lon protease at 1.9A resolution.
J Struct Biol. 146: 113-22, 2004.
[Journal]
22)  Xia D, Esser L, Singh SK, Guo F, Maurizi MR.
Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone.
J Struct Biol. 146: 166-79, 2004.
[Journal]
23)  Kang SG, Maurizi MR, Thompson M, Mueser T, Ahvazi B.
Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP.
J. Struct. Biol. 148: 338-35, 2004.
[Journal]
24)  Maurizi MR, Xia D.
Protein binding and disruption by Clp/Hsp100 chaperones.
Structure (Camb). 12: 175-83, 2004.
[Journal]
25)  Botos I, Melnikov EE, Cherry S, Tropea JE, Khalatova AG, Rasulova F, Dauter Z, Maurizi MR, Rotanova TV, Wlodawer A, Gustchina A.
The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site.
J Biol Chem. 279: 8140-8, 2004.
[Journal]
26)  Ishikawa T, Maurizi MR, Steven AC.
The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease.
J Struct Biol. 146: 180-8, 2004.
[Journal]
27)  Ortega J, Lee HS, Maurizi MR, Steven AC.
Alternating translocation of protein substrates from both ends of ClpXP protease.
EMBO J. 21: 4938-49, 2002.
[Journal]
28)  Guo F, Maurizi MR, Esser L, Xia D.
Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease.
J Biol Chem. 277: 46743-52, 2002.
[Journal]
29)  Guo F, Esser L, Singh SK, Maurizi MR, Xia D.
Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA.
J Biol Chem. 277: 46753-62, 2002.
[Journal]
30)  Kang SG, Ortega J, Singh SK, Wang N, Huang NN, Steven AC, Maurizi MR.
Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP.
J Biol Chem. 277: 21095-102, 2002.
[Journal]
31)  Maurizi MR.
Love it or cleave it: tough choices in protein quality control.
Nat Struct Biol. 9: 410-2, 2002.
[Journal]
32)  Gottesman S, Maurizi MR.
Cell biology. Surviving starvation.
Science. 293: 614-5, 2001.
[Journal]
33)  Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR.
Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
J Biol Chem. 276: 29420-9, 2001.
[Journal]
34)  Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S.
The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
Genes Dev. 15: 627-37, 2001.
[Journal]
35)  Ishikawa T, Maurizi MR, Belnap D, Steven AC.
Docking of components in a bacterial complex.
Nature. 408: 667-8, 2000.
[Journal]
36)  Hoskins JR, Singh SK, Maurizi MR, Wickner S.
Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP.
Proc. Natl. Acad. Sci. U.S.A. 97: 8892-7, 2000.
[Journal]
37)  Gonzalez M, Rasulova F, Maurizi MR, Woodgate R.
Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability.
EMBO J. 19: 5251-8, 2000.
[Journal]
38)  Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR.
Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.
Proc. Natl. Acad. Sci. U.S.A. 97: 8898-903, 2000.
[Journal]
39)  Ortega J, Singh SK, Ishikawa T, Maurizi MR, Steven AC.
Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP.
Mol. Cell. 6: 1515-21, 2000.
[Journal]
Click Here to View Collapsed Bibliography.

This page was last updated on 5/8/2014.