Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Zhang Website

Ying E. Zhang, Ph.D.

Selected Publications

1)  Yu L, Hébert MC, Zhang YE.
TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses.
EMBO J. 21: 3749-59, 2002.
2)  Yamashita M, Ying S, Zhang G, Li C, Cheng SY, Deng C, Zhang YE.
Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation.
Cell. 121: 101-13, 2005.
3)  Yang YA, Zhang GM, Feigenbaum L, Zhang YE.
Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2.
Cancer Cell. 9: 445-57, 2006.
4)  Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE.
TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta.
Mol Cell. 31: 918-24, 2008.
5)  Blank M, Tang Y, Yamashita M, Burkett SS, Cheng SY, Zhang YE.
A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20.
Nat. Med. 18: 227-34, 2012.
6)  Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng SY.
Requirement of Smurf-mediated endocytosis of Patched1 in Sonic Hedgehog signal reception.
Elife. e02555, 2014.
7)  Zhang YE, Newfeld SJ.
Meeting report - TGF-beta superfamily: signaling in development and disease.
J. Cell. Sci. 126: 4809-13, 2013.
8)  Wang X, Jin C, Tang Y, Tang LY, Zhang YE.
Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells.
J. Biol. Chem. 288: 21784-92, 2013.
9)  Zhang YE.
A special issue on TGF-beta signaling and biology.
Cell Biosci. 1: 39, 2011.
10)  Tang LY, Yamashita M, Coussens NP, Tang Y, Wang X, Li C, Deng C, Cheng SY, Zhang YE.
Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3.
EMBO J. 30: 4777-89, 2011.
11)  Orvedahl A, Sumpter RJ, Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q, Roth M, Forst CV, Wrana JL, Zhang YE, Luby-Phelps K, Xavier RJ, Xie Y, Levine B.
Image-based genome-wide siRNA screen identifies selective autophagy factors.
Nature. 480: 113-7, 2011.
12)  Tang LY, Zhang YE.
Non-degradative ubiquitination in Smad-dependent TGF-beta signaling.
Cell Biosci. 1: 43, 2011.
13)  Cheng SY, Zhang YE.
Smurfs have fused into the asymmetric division of stem cells.
Protein Cell. 2: 2-4, 2011.
14)  Zhang YE.
Stopped in translation: EMT control meets eukaryotic elongation.
Dev. Cell. 20: 289-90, 2011.
15)  Zhang M, Wang M, Tan X, Li TF, Zhang YE, Chen D.
Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes.
J. Biol. Chem. 285: 8703-10, 2010.
16)  Millet C, Yamashita M, Heller M, Yu L, Veenstra TD, Zhang YE.
A negative feedback control of TGF-beta signaling by GSK3-mediated Smad3 linker phosphorylation at Ser204.
J. Biol. Chem. 284: 19808-16, 2009.
17)  Zhang YE.
Non-Smad pathways in TGF-beta signaling.
Cell Res. 19: 128-39, 2009.
18)  Jin C, Yang YA, Anver MR, Morris N, Wang X, Zhang YE.
Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness.
Cancer Res. 69: 735-40, 2009.
19)  Landry J, Sharov AA, Piao Y, Sharova LV, Xiao H, Southon E, Matta J, Tessarollo L, Zhang YE, Ko MS, Kuehn MR, Yamaguchi TP, Wu C.
Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.
PLoS Genet. 4: e1000241, 2008.
20)  Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, Awad HA, Yanoso L, Zhao L, Schwarz EM, Zhang YE, Boyce BF, Xing L.
Ubiquitin ligase Smurf1 mediates TNF-induced systemic bone loss by promoting proteasomal degradation of BMP signaling proteins.
J. Biol. Chem. 283: 23084-92, 2008.
21)  Millet C, Zhang YE.
Roles of Smad3 in TGF-beta signaling during carcinogenesis.
Crit. Rev. Eukaryot. Gene Expr. 17: 281-93, 2007.
22)  Boyer L, Turchi L, Desnues B, Doye A, Ponzio G, Mege JL, Yamashita M, Zhang YE, Bertoglio J, Flatau G, Boquet P, Lemichez E.
CNF1-induced ubiquitylation and proteasome destruction of activated RhoA is impaired in Smurf1-/- cells.
Mol. Biol. Cell. 17: 2489-97, 2006.
23)  Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF, Xing L.
Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts.
J. Biol. Chem. 281: 4326-33, 2006.
24)  Tian F, Byfield SD, Parks WT, Stuelten CH, Nemani D, Zhang YE, Roberts AB.
Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines.
Cancer Res. 64: 4523-30, 2004.
25)  Derynck R, Zhang YE.
Smad-dependent and Smad-independent pathways in TGF-beta family signalling.
Nature. 425: 577-584, 2003.
26)  Ying SX, Hussain ZJ, Zhang YE.
Smurf1 Facilitates Myogenic Differentiation and Antagonizes the Bone Morphogenetic Protein-2-induced Osteoblast Conversion by Targeting Smad5 for Degradation.
J. Biol. Chem. 278: 39029-36, 2003.
27)  Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R.
Regulation of Smad degradation and activity by Smurf2 E3 ubiquitin ligase.
Proc. Natl. Acad. Sci. USA. 98: 974-979, 2001.
28)  Qing J, Zhang Y, Derynck R.
Structural and functional characterization of the TGF-beta induced Smad3/c-Jun transcriptional cooperativity.
J. Biol. Chem. 275: 38802-38812, 2000.
29)  Zhang Y, Derynck R.
Transcriptional regulation of the TGF-beta-inducible mouse germ line Ig alpha constant region gene by functional cooperation of Smad, CREB, and AML family Members.
J. Biol. Chem. 275: 16979-16985, 2000.
30)  Zhang Y, Derynck R.
Regulation of Smad signalling by protein associations and signalling crosstalk.
Trends Cell Biol. 9: 274-279, 1999.
31)  Zhang Y, Feng XH, Derynck R.
Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription.
Nature. 394: 909-913, 1998.
32)  Derynck R, Zhang Y, Feng XH.
Smads: Transcriptional activators of TGF-beta responses.
Cell. 95: 737-740, 1998.
33)  Feng XH, Zhang Y, Wu RY, Derynck R.
The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-beta-induced transcripional activation.
Genes & Dev. 12: 2153-2163, 1998.
34)  Candia AF, Watabe T, Hawley SH, Onichtchouk D, Zhang Y, Derynck R, Niehrs C, Cho KW.
Cellular interpretation of multiple TGF-beta signals: Intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads.
Development. 124: 4467-4480, 1997.
35)  Wu RY, Zhang Y, Feng XH, Derynck R.
Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4.
Mol. Cell. Biol. 17: 2521-2518, 1997.
36)  Zhang Y, Musci T, Derynck R.
The tumor suppressor Smad4/DPC4 as a central mediator of Smad function.
Curr. Biol. 7: 270-276, 1997.
37)  Derynck R, Zhang Y.
Intracellular signaling: the MAD way to do it.
Curr. Biol. 6: 1226-1229, 1996.
38)  Zhang Y, Feng X, We R, Derynck R.
Receptor-associated Mad homologues synergize as effectors of the TGF-beta response.
Nature. 383: 168-172, 1996.
Click Here to View Collapsed Bibliography.

This page was last updated on 7/11/2014.