Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Lichten Website

Michael Lichten, Ph.D.

Selected Publications

1)  Lichten M.
Smith J, Burke D, eds.
Tetrad, random spore and molecular analysis of meiotic segregation and recombination. In: Methods in Molecular Biology: Yeast Genetics Methods and Protocols. Volume 1205.
Totowa, NJ: Humana Press; 2014. In Press. [Book Chapter]
2)  Borde V, Lichten M.
A timeless but timely connection between replication and recombination.
Cell. 158, 2014.
In Press. [Journal]
3)  De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M.
BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism.
Mol. Cell. 46: 43-53, 2012.
4)  Dayani Y, Simchen G, Lichten M.
Meiotic Recombination Intermediates Are Resolved with Minimal Crossover Formation during Return-to-Growth, an Analogue of the Mitotic Cell Cycle.
PLoS Genet. 7: e1002083, 2011.
5)  Lichten M, de Massy B.
The impressionistic landscape of meiotic recombination.
Cell. 147: 267-70, 2011.
6)  Goldfarb T, Lichten M.
Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis.
PLoS Biol. 8: e1000520, 2010.
7)  Buhler C, Shroff R, Lichten M.
Genome-wide mapping of meiotic DNA double-strand breaks in Saccharomyces cerevisiae.
Methods Mol. Biol. 557: 143-64, 2009.
8)  Jordan P, Copsey A, Newnham L, Kolar E, Lichten M, Hoffmann E.
Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast meiosis.
Genes Dev. 23: 2237-51, 2009.
9)  Oh SD, Jessop L, Lao JP, Allers T, Lichten M, Hunter N.
Stabilization and electrophoretic analysis of meiotic recombination intermediates in Saccharomyces cerevisiae.
Methods Mol. Biol. 557: 209-34, 2009.
10)  Lichten M.
Genomics: Thoroughly modern meiosis.
Nature. 454: 421-2, 2008.
11)  Jessop L, Lichten M.
Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis.
Mol. Cell. 31: 313-23, 2008.
12)  Sourirajan A, Lichten M.
Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis.
Genes Dev. 22: 2627-32, 2008.
13)  Buhler C, Borde V, Lichten M.
Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae.
PLoS Biol. 5: e324, 2007.
14)  Jessop L, Rockmill B, Roeder GS, Lichten M.
Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1.
PLoS Genet. 2: e155, 2006.
15)  Jessop L, Rockmill B, Roeder GS, Lichten M.
Meiotic Chromosome Synapsis-Promoting Proteins Antagonize the Anti-Crossover Activity of Sgs1.
PLoS Genetics. 2: e155, 2006.
Full Text Article. [Journal]
16)  Nakamura A, Sedelnikova OA, Redon C, Pilch DR, Sinogeeva NI, Shroff R, Lichten M, Bonner WM.
Techniques for gamma-H2AX detection.
Meth. Enzymol. 409: 236-50, 2006.
17)  Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A.
Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome.
Mol. Cell. Biol. 25: 7216-25, 2005.
18)  Jessop L, Allers T, Lichten M.
Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae.
Genetics. 169: 1353-67, 2005.
19)  Lichten M.
Rad50 connects by hook or by crook.
Nat Struct Mol Biol. 12: 392-3, 2005.
20)  Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A.
Association of Mre11p with double-strand break sites during yeast meiosis.
Mol Cell. 13: 389-401, 2004.
21)  Schlecht HB, Lichten M, Goldman AS.
Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination.
Genetics. 168: 1189-203, 2004.
22)  Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M.
Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break.
Curr Biol. 14: 1703-11, 2004.
23)  Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D.
DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain.
Mol Cell. 16: 991-1002, 2004.
24)  Murakami H, Borde V, Shibata T, Lichten M, Ohta K.
Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites.
Nucleic Acids Res. 31: 4085-90, 2003.
25)  Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K.
Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I.
Nat Cell Biol. 5: 480-5, 2003.
26)  Lichten M.
Describing recombination.
Trends Genet. 17: 135, 2001.
27)  Allers T, Lichten M.
Differential timing and control of noncrossover and crossover recombination during meiosis.
Cell. 106: 47-57, 2001.
28)  Hunter N, Börner GV, Lichten M, Kleckner N.
Gamma-H2AX illuminates meiosis.
Nat. Genet. 27: 236-8, 2001.
29)  Allers T, Lichten M.
Intermediates of yeast meiotic recombination contain heteroduplex DNA.
Mol Cell. 8: 225-231, 2001.
30)  Lichten M.
Meiotic recombination: breaking the genome to save it.
Curr Biol. 11: R253-R256, 2001.
31)  Allers T, Lichten M.
A method for preparing genomic DNA that restrains branch migration of Holliday junctions.
Nucleic Acids Res. 28: E6, 2000.
32)  Borde V, Goldman AS, Lichten M.
Direct coupling between meiotic DNA replication and recombination initiation.
Science. 290: 806-809, 2000.
33)  Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD.
Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 97: 11383-11390, 2000.
34)  Goldman AS, Lichten M.
Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis.
Proc Natl Acad Sci U S A. 97: 9537-9542, 2000.
35)  Ohta K, Wu TC, Lichten M, Shibata T.
Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration.
Nucleic Acids Res. 27: 2175-80, 1999.
36)  Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK.
Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice.
Genetics. 153: 607-20, 1999.
37)  Borde V, Wu TC, Lichten M.
Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae.
Mol. Cell. Biol. 19: 4832-42, 1999.
38)  Goldman AS, Lichten M.
The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location.
Genetics. 144: 43-55, 1996.
39)  Wu TC, Lichten M.
Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae.
Genetics. 140: 55-66, 1995.
40)  Lichten M, Goldman AS.
Meiotic recombination hotspots.
Annu. Rev. Genet. 29: 423-44, 1995.
41)  Liu J, Wu TC, Lichten M.
The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate.
EMBO J. 14: 4599-608, 1995.
42)  Wu TC, Lichten M.
Meiosis-induced double-strand break sites determined by yeast chromatin structure.
Science. 263: 515-8, 1994.
43)  Rocco V, Daly MJ, Matre V, Lichten M, Nicolas A.
Identification of two divergently transcribed genes centromere-proximal to the ARG4 locus on chromosome VIII of Saccharomyces cerevisiae.
Yeast. 9: 1111-20, 1993.
44)  Goyon C, Lichten M.
Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase.
Mol. Cell. Biol. 13: 373-82, 1993.
45)  Haber JE, Leung WY, Borts RH, Lichten M.
The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing.
Proc. Natl. Acad. Sci. U.S.A. 88: 1120-4, 1991.
46)  Lichten M, Goyon C, Schultes NP, Treco D, Szostak JW, Haber JE, Nicolas A.
Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis.
Proc. Natl. Acad. Sci. U.S.A. 87: 7653-7, 1990.
47)  Lichten M, Haber JE.
Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae.
Genetics. 123: 261-8, 1989.
48)  Haber JE, Borts RH, Connolly B, Lichten M, Rudin N, White CI.
Physical monitoring of meiotic and mitotic recombination in yeast.
Prog. Nucleic Acid Res. Mol. Biol. 35: 209-59, 1988.
49)  Lichten M, Borts RH, Haber JE.
Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae.
Genetics. 115: 233-46, 1987.
50)  Borts RH, Lichten M, Haber JE.
Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination.
Genetics. 113: 551-67, 1986.
51)  Lichten M, Fox MS.
Evidence for inclusion of regions of nonhomology in heteroduplex products of bacteriophage lambda recombination.
Proc. Natl. Acad. Sci. U.S.A. 81: 7180-4, 1984.
52)  Borts RH, Lichten M, Hearn M, Davidow LS, Haber JE.
Physical monitoring of meiotic recombination in Saccharomyces cerevisiae.
Cold Spring Harb. Symp. Quant. Biol. 49: 67-76, 1984.
53)  Lichten MJ, Fox MS.
Detection of non-homology-containing heteroduplex molecules.
Nucleic Acids Res. 11: 3959-71, 1983.
54)  Lichten M, Fox MS.
Effects of nonhomology on bacteriophage lambda recombination.
Genetics. 103: 5-22, 1983.
Click Here to View Collapsed Bibliography.

This page was last updated on 8/8/2014.