Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Smith Website

Gilbert Howlett Smith, Ph.D.

Selected Publications

1)  Bruno RD, Boulanger CA, Rosenfield SM, Anderson LH, Lydon JP, Smith GH.
Paracrine-rescued lobulogenesis in chimeric outgrowths comprising progesterone-receptor-null mammary epithelium and redirected wild-type testicular cells.
J. Cell. Sci. 127: 27-32, 2014.
2)  Boulanger CA, Bruno RD, Mack DL, Gonzales M, Castro NP, Salomon DS, Smith GH.
Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by interaction with the mammary microenvironment.
PLoS ONE. 8: e62019, 2013.
3)  Bruno RD, Rosenfield SM, Smith GH.
Late developing mammary tumors and hyperplasia induced by a low-oncogenic variant of mouse mammary tumor virus (MMTV) express genes identical to those induced by canonical MMTV.
Mol. Cancer. 12: 79, 2013.
4)  Wagner K, Booth BW, Boulanger CA, Smith GH.
Multipotent PI-MECs are the true targets of MMTV-neu tumorigenesis.
Oncogene. 32: 1338, 2013.
5)  Rosenfield SM, Smith GH.
Review: Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment.
Cells. 2: 43-56, 2013.
6)  Smith GH.
Biology of mammary gland development.
Semin. Cell Dev. Biol. 23: 546, 2012.
7)  Raafat A, Strizzi L, Lashin K, Ginsburg E, McCurdy D, Salomon D, Smith GH, Medina D, Callahan R.
Effects of Age and Parity on Mammary Gland Lesions and Progenitor Cells in the FVB/N-RC Mice.
PLoS ONE. 7: e43624, 2012.
8)  Callahan R, Mudunur U, Bargo S, Raafat A, McCurdy D, Boulanger C, Lowther W, Stephens R, Luke BT, Stewart C, Wu X, Munroe D, Smith GH.
Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors.
Oncotarget. 3: 1320-34, 2012.
9)  Bussard KM, Smith GH.
Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo.
PLoS ONE. 7: e49221, 2012.
10)  Bruno RD, Boulanger CA, Smith GH.
Notch-induced mammary tumorigenesis does not involve the lobule-limited epithelial progenitor.
Oncogene. 31: 60-7, 2012.
11)  Bruno RD, Smith GH.
Reprogramming non-mammary and cancer cells in the developing mouse mammary gland.
Semin. Cell Dev. Biol. 23: 591-8, 2012.
12)  Boulanger CA, Bruno RD, Rosu-Myles M, Smith GH.
The Mouse Mammary Microenvironment Redirects Mesoderm-Derived Bone Marrow Cells to a Mammary Epithelial Progenitor Cell Fate.
Stem Cells Dev. 21: 948-54, 2012.
13)  Bruno RD, Smith GH.
Functional characterization of stem cell activity in the mouse mammary gland.
Stem Cell Rev. 7: 238-47, 2011.
14)  Visvader JE, Smith GH.
Murine mammary epithelial stem cells: discovery, function, and current status.
Cold Spring Harb Perspect Biol. 3: a004879, 2011.
15)  Bruno RD, Smith GH.
Role of epithelial stem/progenitor cells in mammary cancer.
Gene Expr. 15: 133-40, 2011.
16)  Anderson LH, Boulanger CA, Smith GH, Carmeliet P, Watson CJ.
Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland.
Dev. Dyn. 240: 674-81, 2011.
17)  Bussard KM, Smith GH.
The mammary gland microenvironment directs progenitor cell fate in vivo.
Int J Cell Biol. 2011: 451676, 2011.
18)  Booth BW, Boulanger CA, Anderson LH, Smith GH.
The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells.
Oncogene. 30: 679-89, 2011.
19)  Booth BW, Boulanger CA, Anderson LH, Jimenez-Rojo L, Brisken C, Smith GH.
Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics.
Exp. Cell Res. 316: 422-32, 2010.
20)  Bussard KM, Boulanger CA, Kittrell FS, Behbod F, Medina D, Smith GH.
Immortalized, premalignant epithelial cell populations contain long-lived, label-retaining cells that asymmetrically divide and retain their template DNA.
Breast Cancer Res. 12: R86, 2010.
21)  Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH.
Reprogramming human cancer cells in the mouse mammary gland.
Cancer Res. 70: 6336-43, 2010.
22)  Smith GH, Salomon DS, Vonderhar BK.
Stem Cells. 27: 1223; author reply 1224-5, 2009.
23)  Boulanger CA, Smith GH.
Reprogramming cell fates in the mammary microenvironment.
Cell Cycle. 8: 1127-32, 2009.
24)  Callahan R, Smith GH.
Common integration sites for MMTV in viral induced mouse mammary tumors.
J. Mammary Gland Biol. Neoplasia. 13: 309-21, 2008.
25)  Strizzi L, Mancino M, Bianco C, Raafat A, Gonzales M, Booth BW, Watanabe K, Nagaoka T, Mack DL, Howard B, Callahan R, Smith GH, Salomon DS.
Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland.
J. Cell. Physiol. 216: 824-34, 2008.
26)  Smith GH, Medina D.
Re-evaluation of mammary stem cell biology based on in vivo transplantation.
Breast Cancer Res. 10: 203, 2008.
27)  Booth BW, Boulanger CA, Smith GH.
Selective segregation of DNA strands persists in long-label-retaining mammary cells during pregnancy.
Breast Cancer Res. 10: R90, 2008.
28)  Vonderhaar BK, Smith GH.
Stem cells and breast cancer. Introduction.
Breast Dis. 29: 1, 2008.
29)  Booth BW, Boulanger CA, Smith GH.
Stem cells and the mammary microenvironment.
Breast Dis. 29: 57-67, 2008.
30)  Smith GH.
Stem cells, hormones, and mammary cancer.
Adv. Exp. Med. Biol. 617: 69-78, 2008.
31)  Smith GH, Medina D.
The future of mammary stem cell biology: the power of in vivo transplants - authors' response.
Breast Cancer Res. 10: 403, 2008.
32)  Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA, Smith GH.
The mammary microenvironment alters the differentiation repertoire of neural stem cells.
Proc. Natl. Acad. Sci. U.S.A. 105: 14891-6, 2008.
33)  Callahan R, Smith GH.
The mouse as a model for mammary tumorigenesis: history and current aspects.
J. Mammary Gland Biol. Neoplasia. 13: 269, 2008.
34)  Booth BW, Boulanger CA, Smith GH.
Alveolar progenitor cells develop in mouse mammary glands independent of pregnancy and lactation.
J. Cell. Physiol. 212: 729-36, 2007.
35)  Mack DL, Boulanger CA, Callahan R, Smith GH.
Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis.
Breast Cancer Res. 9: R42, 2007.
36)  Boulanger CA, Mack DL, Booth BW, Smith GH.
Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo.
Proc. Natl. Acad. Sci. U.S.A. 104: 3871-6, 2007.
37)  Booth BW, Smith GH.
Roles of transforming growth factor-alpha in mammary development and disease.
Growth Factors. 25: 227-35, 2007.
38)  Booth BW, Jhappan C, Merlino G, Smith GH.
TGFbeta1 and TGFalpha contrarily affect alveolar survival and tumorigenesis in mouse mammary epithelium.
Int. J. Cancer. 120: 493-9, 2007.
39)  Booth BW, Smith GH.
Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands.
Breast Cancer Res. 8: R49, 2006.
40)  Smith GH.
Mammary stem cells come of age, prospectively.
Trends Mol Med. 12(7): 287-9, 2006.
41)  Lowther W, Wiley K, Smith GH, Callahan R.
A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences.
J Virol. 79: 10093-6, 2005.
42)  Triplett AA, Sakamoto K, Matulka LA, Shen L, Smith GH, Wagner KU.
Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells.
Genesis. 43: 1-11, 2005.
43)  Smith GH.
Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands.
Development. 132: 681-7, 2005.
44)  Boulanger CA, Wagner KU, Smith GH.
Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression.
Oncogene. 24: 552-60, 2005.
45)  Wagner KU, Smith GH.
Pregnancy and stem cell behavior.
J Mammary Gland Biol Neoplasia. 10: 25-36, 2005.
46)  Smith G.
Stem Cells and Mammary Cancer in Mice.
Stem Cell Reviews. 1: 215-224, 2005.
47)  Clarke RB, Smith GH.
Stem cells and tissue homeostasis in mammary glands.
J Mammary Gland Biol Neoplasia. 10: 1-3, 2005.
48)  Nemade RV, Bierie B, Nozawa M, Bry C, Smith GH, Vasioukhin V, Fuchs E, Hennighausen L.
Biogenesis and function of mouse mammary epithelium depends on the presence of functional alpha-catenin.
Mech, Dev. 121: 91-99, 2004.
49)  Smith GH.
Mammary Epithelial Stem cells.
In Stem Cell Handbook. Ed. S. Sell. Humana Press, N.J.: 437-444, 2004.
50)  Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU.
Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu mice.
Oncogene. 23: 6980-6985, 2004.
51)  Smith GH, Boulanger CA.
Stem cells in mammary epithelium.
In Handbook of Stem Cells, Vol. 2,Eds R. Lanza, H. Blau, D. Melton, M. Moore, E. Thomas, C. Verfaillie, I. Wessman, M. West. Elsevier Academic Press, N.Y.: 269-278, 2004.
52)  Smith GH, Boulanger CA.
Mammary Epithelial Stem cells: transplantation and self-renewal analysis.
Cell Prolif. Suppl.1: 3-15, 2003.
53)  Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH.
An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal.
Development. 129: 1377-86, 2002.
Click Here to View Collapsed Bibliography.

This page was last updated on 6/30/2014.