Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Hatfield Website

Dolph L. Hatfield, Ph.D.

Selected Publications

1)  Xu X, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL.
Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes.
PLoS Biol. 5: e4, 2007.
2)  Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Gladyshev VN, Hatfield DL.
Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery.
Proc. Natl. Acad. Sci. U.S.A. 107: 21430-4, 2010.
3)  Yoo M, Carlson B, Tsuji P, Tobe R, Naranjo-Suarez S, Lee B, Davis C, Gladyshev V, Hatfield D.
Hatfield D, Berry M, Gladyshev V, eds.
Selenoproteins harboring a split personality in both preventing and promoting cancer. In: Selenium: Its molecular biology and role in human health. Volume 3.
New York: Springer Science+Business Media, LLC; 2012. p. 325-334 [Book Chapter]
4)  Carlson BA, Yoo M, Tobe R, Mueller C, Naranjo-Suarez S, Hoffmann VJ, Gladyshev VN, Hatfield DL.
Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis.
Carcinogenesis. 33: 1806-13, 2012.
5)  Yoo MH, Carlson BA, Gladyshev VN, Hatfield DL.
Abrogated Thioredoxin System Causes Increased Sensitivity to TNF-a-Induced Apoptosis via Enrichment of p-ERK 1/2 in the Nucleus.
PLoS ONE. 8: e71427, 2013.
6)  Seeher S, Carlson BA, Miniard AC, Wirth EK, Mahdi Y, Hatfield DL, Driscoll DM, Schweizer U.
Impaired selenoprotein expression in brain triggers striatal neuronal loss leading to coordination defects in mice.
Biochem. J. 2014.
7)  Barroso M, Florindo C, Kalwa H, Silva Z, Turanov AA, Carlson BA, Tavares de Almeida I, Blom HJ, Gladyshev VN, Hatfield DL, Michel T, Castro R, Loscalzo J, Handy DE.
Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase-1 Expression.
J. Biol. Chem. [Epub ahead of print], 2014.
8)  Seeher S, Atassi T, Mahdi Y, Carlson BA, Braun D, Wirth EK, Klein MO, Reix N, Miniard AC, Schomburg L, Hatfield DL, Driscoll DM, Schweizer U.
Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression.
Antioxid. Redox Signal. [Epub ahead of print], 2014.
9)  Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN.
Selenium and selenocysteine: roles in cancer, health, and development.
Trends Biochem. Sci. 39: 112-20, 2014.
10)  Turanov AA, Shchedrina VA, Everley RA, Lobanov AV, Yim SH, Marino SM, Gygi SP, Hatfield DL, Gladyshev VN.
Selenoprotein S is Involved in Maintenance and Transport of Multiprotein Complexes.
Biochem. J. 2014.
11)  Kasaikina MV, Turanov AA, Avanesov A, Schweizer U, Seeher S, Bronson RT, Novoselov SN, Carlson BA, Hatfield DL, Gladyshev VN.
Contrasting roles of dietary selenium and selenoproteins in chemically induced hepatocarcinogenesis.
Carcinogenesis. 34: 1089-95, 2013.
12)  Patterson AD, Carlson BA, Li F, Bonzo JA, Yoo M, Krausz KW, Conrad M, Chen C, Gonzalez FJ, Hatfield DL.
Disruption of Thioredoxin Reductase 1 Protects Mice from Acute Acetaminophen-Induced Hepatotoxicity through Enhanced NRF2 Activity.
Chem. Res. Toxicol. 26: 1088-96, 2013.
13)  Tobe R, Naranjo-Suarez S, Everley RA, Carlson BA, Turanov AA, Tsuji PA, Yoo MH, Gygi SP, Gladyshev VN, Hatfield DL.
High error rates in selenocysteine insertion in mammalian cells treated with the antibiotic doxycycline, chloramphenicol, or geneticin.
J. Biol. Chem. 288: 14709-15, 2013.
14)  Naranjo-Suarez S, Carlson BA, Tobe R, Yoo MH, Tsuji PA, Gladyshev VN, Hatfield DL.
Regulation of HIF-1a activity by overexpression of thioredoxin is independent of thioredoxin reductase status.
Mol. Cells. 36: 151-7, 2013.
15)  Moustafa ME, Carlson BA, Anver MR, Bobe G, Zhong N, Ward JM, Perella CM, Hoffmann VJ, Rogers K, Combs GF, Schweizer U, Merlino G, Gladyshev VN, Hatfield DL.
Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFa.
PLoS ONE. 8: e57389, 2013.
16)  Kim M, Chen Z, Shim MS, Lee MS, Kim JE, Kwon YE, Yoo TJ, Kim JY, Bang JY, Carlson BA, Seol JH, Hatfield DL, Lee BJ.
SUMO modification of NZFP mediates transcriptional repression through TBP binding.
Mol. Cells. 35: 70-8, 2013.
17)  Sengupta A, Lichti UF, Carlson BA, Cataisson C, Ryscavage AO, Mikulec C, Conrad M, Fischer SM, Hatfield DL, Yuspa SH.
Targeted Disruption of Glutathione Peroxidase 4 in Mouse Skin Epithelial Cells Impairs Postnatal Hair Follicle Morphogenesis that Is Partially Rescued through Inhibition of COX-2.
J. Invest. Dermatol. 133: 1731-41, 2013.
18)  Howard MT, Carlson BA, Anderson CB, Hatfield DL.
Translational Redefinition of UGA Codons Is Regulated by Selenium Availability.
J. Biol. Chem. 288: 19401-13, 2013.
19)  Turanov AA, Lobanov AV, Hatfield DL, Gladyshev VN.
UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins.
Nucleic Acids Res. 41: 6952-9, 2013.
20)  Hatfield D.
Hatfield D, Berry M, Gladyshev V, eds.
Selenium: Its molecular biology and role in human health. Volume 3.
New York: Springer Science+Business Media, LLC; 2012. [Book]
21)  Carlson B, Yoo M, Tsuji P, Tobe R, Naranjo-Suarez S, Chen F, Feigenbaum L, Tessarollo L, Lee BJ, Gladyshev V, Hatfield D.
Hatfield D, Berry M, Gladyshev V, eds.
Mouse models that target removal or over-expression of the selenocysteine tRNA[Ser]Sec gene to elucidate the role of selenoproteins in health and development. In: Selenium: Its molecular biology and role in human health. Volume 3.
New York: Springer Science+Business Media, LLC; 2012. p. 561-572 [Book Chapter]
22)  Xu X, Turanov A, Carlson B, Yoo M, Gladyshev V, Hatfield D.
Hatfield D, Berry M, Gladyshev V, eds.
Selenocysteine biosynthesis and the replacement of selenocysteine with cysteine in the pathway. In: Selenium: Its molecular biology and role in human health. Volume 3.
New York: Springer Science+Business Media, LLC; 2012. p. 23-32 [Book Chapter]
23)  Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN.
Composition and evolution of the vertebrate and Mammalian selenoproteomes.
PLoS ONE. 7: e33066, 2012.
24)  Naranjo-Suarez S, Carlson BA, Tsuji PA, Yoo MH, Gladyshev VN, Hatfield DL.
HIF-independent regulation of thioredoxin reductase 1 contributes to the high levels of reactive oxygen species induced by hypoxia.
PLoS ONE. 7: e30470, 2012.
25)  Malinouski M, Kehr S, Finney L, Vogt S, Carlson BA, Seravalli J, Jin R, Handy DE, Park TJ, Loscalzo J, Hatfield DL, Gladyshev VN.
High-Resolution Imaging of Selenium in Kidneys: a Localized Selenium Pool Associated with Glutathione Peroxidase 3.
Antioxid Redox Signal. 16: 185-192, 2012.
26)  Tsuji PA, Carlson BA, Naranjo-Suarez S, Yoo MH, Xu XM, Fomenko DE, Gladyshev VN, Hatfield DL, Davis CD.
Knockout of the 15 kDa selenoprotein protects against chemically-induced aberrant crypt formation in mice.
PLoS ONE. 7: e50574, 2012.
27)  Hudson TS, Carlson BA, Hoeneroff MJ, Young HA, Sordillo L, Muller WJ, Hatfield DL, Green JE.
Selenoproteins reduce susceptibility to DMBA-induced mammary carcinogenesis.
Carcinogenesis. [Epub ahead of print], 2012.
28)  Tobe R, Yoo M, Fradejas N, Carlson BA, Calvo S, Gladyshev VN, Hatfield DL.
Thioredoxin reductase 1 deficiency enhances selenite toxicity in cancer cells via a thioredoxin-independent mechanism.
Biochem J. 445:: 423-30, 2012.
29)  Kasaikina MV, Hatfield DL, Gladyshev VN.
Understanding selenoprotein function and regulation through the use of rodent models.
Biochim Biophys Acta. [Epub ahead of print], 2012.
30)  Carlson B, Yoo M, Shrimali R, Irons R, Gladyshev V, Hatfield D, Park J.
Papel de las selenoproteinas en la funcion de cululas T y macrofagos. In: En Immunonutrition: En la salud y la enfermedad.
Madrid: Panamericana; 2011. p. 226-239 [Book Chapter]
31)  Lee BC, Lobanov AV, Marino SM, Kaya A, Seravalli J, Hatfield DL, Gladyshev VN.
A 4-Selenocysteine, 2-Selenocysteine Insertion Sequence (SECIS) Element Methionine Sulfoxide Reductase from Metridium senile Reveals a Non-catalytic Function of Selenocysteines *selected as paper of the week.
J. Biol. Chem. 286: 18747-55, 2011.
Full Text Article. [Journal]
32)  Shchedrina VA, Kabil H, Vorbruggen G, Lee BC, Turanov AA, Hirosawa-Takamori M, Kim HY, Harshman LG, Hatfield DL, Gladyshev VN.
Analyses of fruit flies that do not express selenoproteins or express a mouse selenoprotein, methionine sulfoxide reductase B1, reveal a role of selenoproteins in stress resistance.
J Biol Chem. 286(34): 29449-61, 2011.
33)  Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL.
Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis.
Adv Nutr. 2: 122-8, 2011.
34)  Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN.
Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice.
Antioxid. Redox Signal. 14: 2327-36, 2011.
35)  Kasaikina MV, Kravtsova MA, Lee BC, Seravalli J, Peterson DA, Walter J, Legge R, Benson AK, Hatfield DL, Gladyshev VN.
Dietary selenium affects host selenoproteome expression by influencing the gut microbiota.
FASEB J. 25: 2492-9, 2011.
36)  Lee KH, Shim MS, Kim JY, Jung HK, Lee E, Carlson BA, Xu X, Park JM, Hatfield DL, Park T, Lee BJ.
Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: Prediction and confirmation.
BMC Genomics. 12: 426, 2011.
37)  Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN.
Hydrogen peroxide probes directed to different cellular compartments.
PLoS ONE. 6: e14564, 2011.
38)  Kim JY, Carlson BA, Xu XM, Zeng Y, Chen S, Gladyshev VN, Lee BJ, Hatfield DL.
Inhibition of selenocysteine tRNA([Ser]Sec) aminoacylation provides evidence that aminoacylation is required for regulatory methylation of this tRNA.
Biochem. Biophys. Res. Commun. 409: 814-9, 2011.
39)  Shim MS, Kim JY, Lee KH, Jung HK, Carlson BA, Xu X, Hatfield D, Lee BJ.
l(2)01810 is a novel type of glutamate transporter that is responsible for megamitochondrial formation.
Biochemical J. 409: 814-819, 2011.
40)  Carlson BA, Yoo MH, Conrad M, Gladyshev VN, Hatfield DL, Park JM.
Protein kinase-regulated expression and immune function of thioredoxin reductase 1 in mouse macrophages.
Mol. Immunol. 49: 311-6, 2011.
41)  Kasaikina MV, Lobanov AV, Malinouski MY, Lee BC, Seravalli J, Fomenko DE, Turanov AA, Finney L, Vogt S, Park TJ, Miller RA, Hatfield DL, Gladyshev VN.
Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression.
J. Biol. Chem. 286: 17005-14, 2011.
42)  Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN.
Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice.
J Biol Chem. 286: 33203-12, 2011.
43)  Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN.
Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis.
J. Biol. Chem. 286: 42937-48, 2011.
44)  Yoo MH, Carlson BA, Tsuji P, Irons R, Gladyshev VN, Hatfield DL.
Alteration of thioredoxin reductase 1 levels in elucidating cancer etiology.
Meth. Enzymol. 474: 255-75, 2010.
45)  Turanov AA, Hatfield DL, Gladyshev VN.
Characterization of protein targets of mammalian thioredoxin reductases.
Meth. Enzymol. 474: 245-54, 2010.
46)  Irons R, Tsuji PA, Carlson BA, Ouyang P, Yoo MH, Xu XM, Hatfield DL, Gladyshev VN, Davis CD.
Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells.
Cancer Prev Res (Phila Pa). 3: 630-9, 2010.
47)  Lobanov AV, Turanov AA, Hatfield DL, Gladyshev VN.
Dual functions of codons in the genetic code.
Crit. Rev. Biochem. Mol. Biol. 45: 257-65, 2010.
48)  Kim JY, Lee KH, Shim MS, Shin H, Xu XM, Carlson BA, Hatfield DL, Lee BJ.
Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns.
Biochem. Biophys. Res. Commun. 397: 53-8, 2010.
49)  Turanov AA, Kehr S, Marino SM, Yoo MH, Carlson BA, Hatfield DL, Gladyshev VN.
Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets.
Biochem. J. 430: 285-93, 2010.
50)  Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW, Coppola V, Tessarollo L, Schomburg L, Köhrle J, Hatfield DL, Schweizer U.
Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration.
FASEB J. 24: 844-52, 2010.
51)  Novoselov SV, Kim HY, Hua D, Lee BC, Astle CM, Harrison DE, Friguet B, Moustafa ME, Carlson BA, Hatfield DL, Gladyshev VN.
Regulation of selenoproteins and methionine sulfoxide reductases A and B1 by age, calorie restriction, and dietary selenium in mice.
Antioxid. Redox Signal. 12: 829-38, 2010.
52)  Carlson BA, Yoo MH, Shrimali RK, Irons R, Gladyshev VN, Hatfield DL, Park JM.
Role of selenium-containing proteins in T-cell and macrophage function.
Proc Nutr Soc. 69: 300-10, 2010.
53)  Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL.
Selenoproteins are essential for proper keratinocyte function and skin development.
PLoS ONE. 5: e12249, 2010.
54)  Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN.
Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins.
Antioxid. Redox Signal. 12: 839-49, 2010.
55)  Gladyshev V, Hatfield D.
Selenocysteine biosynthesis, selenoproteins and selenoproteomes. In: Recoding: Expansion of decoding rules enriches gene expression. Volume 1.
New York: Springer+Science Media, LLC; 2009. p. 3-27 [Book Chapter]
56)  Yoo MH, Gu X, Xu XM, Kim JY, Carlson BA, Patterson AD, Cai H, Gladyshev VN, Hatfield DL.
Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer's disease.
Antioxid. Redox Signal. 2009.
57)  Shim MS, Kim JY, Jung HK, Lee KH, Xu X, Carlson BA, Kim KW, Kim IY, Hatfield DL, Lee BJ.
Elevation of glutamine level by selenophosphate synthetase 1 knockdown induces megamitochondria formation in Drosophila cells.
J. Biol. Chem. 284(47): 32881-94, 2009.
58)  Lobanov AV, Hatfield DL, Gladyshev VN.
Eukaryotic selenoproteins and selenoproteomes.
Biochim. Biophys. Acta. 1790(11): 1424-8, 2009.
59)  Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, Klobutcher LA, Hatfield DL, Gladyshev VN.
Genetic code supports targeted insertion of two amino acids by one codon.
Science. 323: 259-61, 2009.
60)  Carlson BA, Yoo MH, Tsuji PA, Gladyshev VN, Hatfield DL.
Mouse models targeting selenocysteine tRNA expression for elucidating the role of selenoproteins in health and development.
Molecules (Basel, Switzerland). 14: 3509-27, 2009.
61)  Fomenko DE, Novoselov SV, Natarajan SK, Lee BC, Koc A, Carlson BA, Lee TH, Kim HY, Hatfield DL, Gladyshev VN.
MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form.
J. Biol. Chem. 284: 5986-93, 2009.
62)  Downey CM, Horton CR, Carlson BA, Parsons TE, Hatfield DL, Hallgrímsson B, Jirik FR.
Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin-Beck disease.
PLoS Genet. 5: e1000616, 2009.
63)  Sengupta A, Carlson BA, Labunskyy VM, Gladyshev VN, Hatfield DL.
Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells.
Biochem. Cell Biol. 87: 953-61, 2009.
64)  Carlson BA, Yoo MH, Sano Y, Sengupta A, Kim JY, Irons R, Gladyshev VN, Hatfield DL, Park JM.
Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression.
BMC Immunol. 10: 57, 2009.
65)  Hatfield DL, Yoo MH, Carlson BA, Gladyshev VN.
Selenoproteins that function in cancer prevention and promotion.
Biochim. Biophys. Acta. 2009.
66)  Labunskyy VM, Yoo MH, Hatfield DL, Gladyshev VN.
Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses.
Biochemistry. 48: 8458-65, 2009.
67)  Xu XM, Yoo MH, Carlson BA, Gladyshev VN, Hatfield DL.
Simultaneous knockdown of the expression of two genes using multiple shRNAs and subsequent knock-in of their expression.
Nat Protoc. 4: 1338-48, 2009.
68)  Hatfield DL, Gladyshev VN.
The Outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology.
Mol. Interv. 9: 18-21, 2009.
69)  Carlson BA, Schweizer U, Perella C, Shrimali RK, Feigenbaum L, Shen L, Speransky S, Floss T, Jeong SJ, Watts J, Hoffmann V, Combs GF, Gladyshev VN, Hatfield DL.
The selenocysteine tRNA STAF-binding region is essential for adequate selenocysteine tRNA status, selenoprotein expression and early age survival of mice.
Biochem. J. 418: 61-71, 2009.
70)  Kehr S, Malinouski M, Finney L, Vogt S, Labunskyy VM, Kasaikina MV, Carlson BA, Zhou Y, Hatfield DL, Gladyshev VN.
X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis.
J. Mol. Biol. 389: 808-18, 2009.
71)  Sengupta A, Carlson BA, Weaver JA, Novoselov SV, Fomenko DE, Gladyshev VN, Hatfield DL.
A functional link between housekeeping selenoproteins and phase II enzymes.
Biochem. J. 413: 151-61, 2008.
72)  Le DT, Liang X, Fomenko DE, Raza AS, Chong C, Carlson BA, Hatfield DL, Gladyshev VN.
Analysis of Methionine/Selenomethionine Oxidation and Methionine Sulfoxide Reductase Function Using Methionine-Rich Proteins and Antibodies against Their Oxidized Forms.
Biochemistry. Epub ahead of print, 2008.
73)  Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J, Hatfield DL, Gladyshev VN.
Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals.
J. Biol. Chem. 283: 2427-38, 2008.
74)  Zhang Y, Turanov AA, Hatfield DL, Gladyshev VN.
In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait.
BMC Genomics. 9: 251, 2008.
75)  Glass R, Berry M, Block E, Boayke H, Carlson B, Gailer J, George G, Gladyshev V, Hatfield D, Jacobsen N, Johnson S, Kahakachchi C, Kaminski R, Manley S, Mix H, Pickering I, Prenner E, Saira K, Skowronska A, Tyson J, Uden P, Wu O, Xu X, Yamdagni R, Zhang Y.
Insights into the chemical biology of selenium.
Phosphorous, Sulfur , and Silicon and the Relat Elem. 183: 924-930, 2008.
76)  Sengupta A, Carlson BA, Hoffmann VJ, Gladyshev VN, Hatfield DL.
Loss of housekeeping selenoprotein expression in mouse liver modulates lipoprotein metabolism.
Biochem. Biophys. Res. Commun. 365: 446-52, 2008.
77)  Lobanov AV, Hatfield DL, Gladyshev VN.
Reduced reliance on the trace element selenium during evolution of mammals.
Genome Biol. 9: R62, 2008.
78)  Carlson BA, Lee BJ, Hatfield DL.
Ribosomal frameshifting in response to hypomodified tRNAs in Xenopus oocytes.
Biochem. Biophys. Res. Commun. 375: 86-90, 2008.
79)  Kurotani R, Tomita T, Yang Q, Carlson BA, Chen C, Kimura S.
Role of secretoglobin 3A2 in lung development.
Am. J. Respir. Crit. Care Med. 178: 389-98, 2008.
80)  Lobanov AV, Hatfield DL, Gladyshev VN.
Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis.
Protein Sci. 17: 176-82, 2008.
81)  Shrimali RK, Irons RD, Carlson BA, Sano Y, Gladyshev VN, Park JM, Hatfield DL.
Selenoproteins mediate T cell immunity through an antioxidant mechanism.
J. Biol. Chem. 283: 20181-5, 2008.
82)  Ganichkin OM, Xu XM, Carlson BA, Mix H, Hatfield DL, Gladyshev VN, Wahl MC.
Structure and catalytic mechanism of eukaryotic selenocysteine synthase.
J. Biol. Chem. 283: 5849-65, 2008.
83)  Yoo MH, Hatfield DL.
The Cancer Stem Cell Theory: Is It Correct?.
Mol. Cells. 26, 2008.
84)  Kim C, Sano Y, Todorova K, Carlson BA, Arpa L, Celada A, Lawrence T, Otsu K, Brissette JL, Arthur JS, Park JM.
The kinase p38 alpha serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression.
Nat. Immunol. 9: 1019-27, 2008.
85)  Novoselov SV, Lobanov AV, Hua D, Kasaikina MV, Hatfield DL, Gladyshev VN.
A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells.
Proc. Natl. Acad. Sci. U.S.A. 104: 7857-62, 2007.
86)  Yoo MH, Xu XM, Turanov AA, Carlson BA, Gladyshev VN, Hatfield DL.
A new strategy for assessing selenoprotein function: siRNA knockdown/knock-in targeting the 3'-UTR.
RNA. 13: 921-9, 2007.
87)  Howard MT, Moyle MW, Aggarwal G, Carlson BA, Anderson CB.
A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec.
RNA. 13: 912-20, 2007.
88)  Sheridan PA, Zhong N, Carlson BA, Perella CM, Hatfield DL, Beck MA.
Decreased selenoprotein expression alters the immune response during influenza virus infection in mice.
J. Nutr. 137: 1466-71, 2007.
89)  Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN.
Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life.
Genome Biol. 8: R198, 2007.
90)  Carlson B, Xu X, Shrimali R, Sengupta A, Yoo M, Gladyshev V, Hatfield D.
Mouse models for elucidating the role of selenium and selenoproteins in health. Selenium in Health and Disease.
Proceedings of the International Symposium on Selenium in Health and Disease. 23-36, 2007.
91)  Xu XM, Carlson BA, Zhang Y, Mix H, Kryukov GV, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL.
New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea.
Biological trace element research. 119: 234-41, 2007.
92)  Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali R, Rao M, Zhong N, Wang S, Feigenbaum L, Lee BJ, Gladyshev VN, Hatfield DL.
Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34.
J. Biol. Chem. 282: 32591-602, 2007.
93)  Xu XM, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Hatfield DL.
Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis.
Biochem. J. 404: 115-20, 2007.
94)  Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN.
Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern.
J. Biol. Chem. 282: 11960-8, 2007.
95)  Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN.
SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family.
Biochemistry. 46: 6871-82, 2007.
96)  Yoo MH, Xu XM, Carlson BA, Patterson AD, Gladyshev VN, Hatfield DL.
Targeting thioredoxin reductase 1 reduction in cancer cells inhibits self-sufficient growth and DNA replication.
PLoS ONE. 2: e1112, 2007.
97)  Labunskyy VM, Hatfield DL, Gladyshev VN.
The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum.
IUBMB Life. 59: 1-5, 2007.
98)  Hatfield D.
Thioredoxin reductase 1: A double-edged sword in cancer prevention and promotion.
CCR Frontiers in Science. 6: 1-3, 2007.
99)  Hatfield D.
Berry M, Gladyshev V, Gladyshev V, eds.
Selenium: It's molecular biology and role in human health. Volume 2.
New York: Springer; 2006. [Book]
100)  Salinas G, Romero H, Xu X, Carlson B, Hatfield D, Gladyshev V.
Hatfield D, Berry M, Gladyshev V, eds.
Evolution of Sec decoding and the key role of selenophosphate synthetase in the pathway of selenium utilization. In: Selenium: Its molecular biology and role in human health. Volume 2.
New York: Springer; 2006. p. 39-50 [Book Chapter]
101)  Carlson B, Xu X, Shrimali R, Sengupta A, Yoo M, Zhong N, Hatfield D, Irons R, Davis C, Lee B, Novoselov S, Gladyshev V.
Hatfield D, Berry M, Gladyshev V, eds.
Mouse models for assessing the role of selenoproteins in health and development. In: Selenium: Its molecular biology and role in human health. Volume 2.
New York: Springer; 2006. p. 333-342 [Book Chapter]
102)  Hatfield D, Berry M, Gladyshev V.
Hatfield D, Berry M, Gladyshev V, eds.
Preface. In: Selenium: Its molecular biology and role in human health. Volume 2.
New York: Springer; 2006. p. xxi-xxii [Book Chapter]
103)  Labunskyy V, Gladyshev V, Hatfield D.
Hatfield D, Berry M, Gladyshev V, eds.
The 15-kDa selenoprotein (Sep15): functional analysis and role in cancer. In: Selenium: Its molecular biology and role in human health. Volume 2.
New York: Springer; 2006. p. 141-148 [Book Chapter]
104)  Carlson B, Xu X, Shrimali R, Sengupta A, Yoo M, Irons R, Zhong N, Hatfield D, Lee B, Lovanov A, Gladyshev V.
Hatfield D, Berry M, Gladyshev V, eds.
Mammalian and other eukaryotic selenocystein tRNAs. In: Selenium: Its molecular biology and role in human health. Volume 2.
New York: Springer; 2006. p. 29-38 [Book Chapter]
105)  Irons R, Carlson BA, Hatfield DL, Davis CD.
Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression.
J. Nutr. 136: 1311-7, 2006.
106)  Chen CL, Shim MS, Chung J, Yoo H, Ha JM, Kim JY, Choi J, Zang SL, Hou X, Carlson BA, Hatfield DL, Lee BJ.
G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein.
Biochem Biophys Res Commun. 348: 1296-1301, 2006.
Full Text Article. [Journal]
107)  Hatfield D.
How selenium makes its way into protein as selenocysteine, the 21st amino acid in the genetic.
CCR Frontiers in Science. 2: 1-3, 2006.
108)  Lobanov AV, Kryukov GV, Hatfield DL, Gladyshev VN.
Is there a twenty third amino acid in the genetic code?.
Trends in Genetics. 22: 357-360, 2006.
Full Text Article. [Journal]
109)  Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN.
Selenocysteine incorporation machinery and the role of selenoproteins in development and health.
Prog. Nucleic Acid Res. Mol. Biol. 81: 97-142, 2006.
110)  Shrimali RK, Weaver JA, Miller GF, Starost MF, Carlson BA, Novoselov SV, Kumaraswamy E, Gladyshev VN, Hatfield DL.
Selenoprotein expression is essential in endothelial cell development and cardiac muscle function.
Neuromuscul Disord. 2006.
111)  Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Mansell JB, Harney JW, Carlson BA, Xu XM, Hatfield DL, Berry MJ.
Supramolecular complexes mediate selenocysteine incorporation in vivo.
Mol. Cell. Biol. 26: 2337-46, 2006.
112)  Lobanov AV, Delgado C, Rahlfs S, Novoselov SV, Kryukov GV, Gromer S, Hatfield DL, Becker K, Gladyshev VN.
The Plasmodium selenoproteome.
Nucleic Acids Res. 34: 496-505, 2006.
113)  Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL.
Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells.
J. Biol. Chem. 281: 13005-8, 2006.
114)  Carlson B, Xu X, Gladyshev V, Hatfield D.
Grosjean H, eds.
Um34 in selenocysteine tRNA is required for the expression of stress-related selenoproteins in mammals. In: Topics in Current Genetics. Volume 12.
Berlin-Heidelberg: Springer-Verlag; 2005. p. 431-8 [Book Chapter]
115)  Labunskyy VM, Ferguson AD, Fomenko DE, Chelliah Y, Hatfield DL, Gladyshev VN.
A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase.
J. Biol. Chem. 280: 37839-45, 2005.
116)  Xu XM, Mix H, Carlson BA, Grabowski PJ, Gladyshev VN, Berry MJ, Hatfield DL.
Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery.
J. Biol. Chem. 280: 41568-75, 2005.
117)  Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köhrle J, Schomburg L.
Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply.
Biochem J. 386: 221-6, 2005.
118)  Su D, Novoselov SV, Sun QA, Moustafa ME, Zhou Y, Oko R, Hatfield DL, Gladyshev VN.
Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation.
J Biol Chem. 280: 26491-8, 2005.
119)  Sun QA, Su D, Novoselov SV, Carlson BA, Hatfield DL, Gladyshev VN.
Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase.
Biochemistry. 44: 14528-37, 2005.
120)  Carlson BA, Xu XM, Gladyshev VN, Hatfield DL.
Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA.
J Biol Chem. 280: 5542-8, 2005.
121)  Shrimali RK, Lobanov AV, Xu XM, Rao M, Carlson BA, Mahadeo DC, Parent CA, Gladyshev VN, Hatfield DL.
Selenocysteine tRNA identification in the model organisms Dictyostelium discoideum and Tetrahymena thermophila.
Biochem Biophys Res Commun. 329: 147-51, 2005.
122)  Novoselov SV, Calvisi DF, Labunskyy VM, Factor VM, Carlson BA, Fomenko DE, Moustafa ME, Hatfield DL, Gladyshev VN.
Selenoprotein deficiency and high levels of selenium compounds can effectively inhibit hepatocarcinogenesis in transgenic mice.
Oncogene. 24: 8003-11, 2005.
123)  Jin JS, Baek S, Lee H, Oh MY, Koo YE, Shim MS, Kwon SY, Jeon I, Park SY, Baek K, Yoo MA, Hatfield DL, Lee BJ.
A DNA replication-related element downstream from the initiation site of Drosophila selenophosphate synthetase 2 gene is essential for its transcription.
Nucleic Acids Res. 32: 2482-93, 2004.
124)  Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.
Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
Proc. Natl. Acad. Sci. U.S.A. 101: 12848-53, 2004.
125)  Gladyshev VN, Kryukov GV, Fomenko DE, Hatfield DL.
Identification of trace element-containing proteins in genomic databases.
Annu. Rev. Nutr. 24: 579-96, 2004.
126)  Carlson BA, Novoselov SV, Kumaraswamy E, Lee BJ, Anver MR, Gladyshev VN, Hatfield DL.
Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function.
J. Biol. Chem. 279: 8011-7, 2004.
127)  Kim M, Choi J, Carlson BA, Han JK, Rhee K, Sargent T, Hatfield DL, Lee BJ.
A novel TBP-interacting zinc finger protein functions in early development of Xenopus laevis.
Biochem. Biophys. Res. Commun. 306: 1106-11, 2003.
128)  Kim M, Park CH, Lee MS, Carlson BA, Hatfield DL, Lee BJ.
A novel TBP-interacting zinc finger protein represses transcription by inhibiting the recruitment of TFIIA and TFIIB.
Biochem. Biophys. Res. Commun. 306: 231-8, 2003.
129)  Rao M, Carlson BA, Novoselov SV, Weeks DP, Gladyshev VN, Hatfield DL.
Chlamydomonas reinhardtii selenocysteine tRNA[Ser]Sec.
RNA. 9: 923-30, 2003.
130)  Moustafa ME, Kumaraswamy E, Zhong N, Rao M, Carlson BA, Hatfield DL.
Models for assessing the role of selenoproteins in health.
J. Nutr. 133: 2494S-2496S, 2003.
131)  Kumaraswamy E, Carlson BA, Morgan F, Miyoshi K, Robinson GW, Su D, Wang S, Southon E, Tessarollo L, Lee BJ, Gladyshev VN, Hennighausen L, Hatfield DL.
Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium.
Mol. Cell. Biol. 23: 1477-88, 2003.
132)  Hornberger TA, McLoughlin TJ, Leszczynski JK, Armstrong DD, Jameson RR, Bowen PE, Hwang ES, Hou H, Moustafa ME, Carlson BA, Hatfield DL, Diamond AM, Esser KA.
Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.
J. Nutr. 133: 3091-7, 2003.
133)  Kwon SY, Badenhorst P, Martin-Romero FJ, Carlson BA, Paterson BM, Gladyshev VN, Lee BJ, Hatfield DL.
The Drosophila selenoprotein BthD is required for survival and has a role in salivary gland development.
Mol. Cell. Biol. 23: 8495-504, 2003.
134)  Kumaraswamy E, Korotkov KV, Diamond AM, Gladyshev VN, Hatfield DL.
Genetic and functional analysis of mammalian Sep15 selenoprotein.
Meth. Enzymol. 347: 187-97, 2002.
135)  Hatfield DL, Gladyshev VN.
How selenium has altered our understanding of the genetic code.
Mol. Cell. Biol. 22: 3565-76, 2002.
136)  Korotkov KV, Novoselov SV, Hatfield DL, Gladyshev VN.
Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element.
Mol. Cell. Biol. 22: 1402-11, 2002.
137)  Xu XM, Carlson BA, Grimm TA, Kutza J, Berry MJ, Arreola R, Fields KH, Shanmugam I, Jeang KT, Oroszlan S, Combs GF, Marx PA, Gladyshev VN, Clouse KA, Hatfield DL.
Rhesus monkey simian immunodeficiency virus infection as a model for assessing the role of selenium in AIDS.
J. Acquir. Immune Defic. Syndr. 31: 453-63, 2002.
138)  Jameson RR, Carlson BA, Butz M, Esser K, Hatfield DL, Diamond AM.
Selenium influences the turnover of selenocysteine tRNA([Ser]Sec) in Chinese hamster ovary cells.
J. Nutr. 132: 1830-5, 2002.
139)  Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN.
Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii.
EMBO J. 21: 3681-93, 2002.
140)  Carlson BA, Hatfield DL.
Transfer RNAs that insert selenocysteine.
Meth. Enzymol. 347: 24-39, 2002.
141)  Carlson BA, Mushinski JF, Henderson DW, Kwon SY, Crain PF, Lee BJ, Hatfield DL.
1-Methylguanosine in place of Y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting.
Virology. 279: 130-5, 2001.
142)  Gladyshev VN, Hatfield DL.
Analysis of selenocysteine-containing proteins.
Current protocols in protein science / editorial board, John E. Coligan ... [et al.]. Chapter 3: Unit 3.8, 2001.
143)  Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN.
Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells.
J. Biol. Chem. 276: 15330-6, 2001.
144)  Hu YJ, Korotkov KV, Mehta R, Hatfield DL, Rotimi CN, Luke A, Prewitt TE, Cooper RS, Stock W, Vokes EE, Dolan ME, Gladyshev VN, Diamond AM.
Distribution and functional consequences of nucleotide polymorphisms in the 3'-untranslated region of the human Sep15 gene.
Cancer Res. 61: 2307-10, 2001.
145)  Sun QA, Zappacosta F, Factor VM, Wirth PJ, Hatfield DL, Gladyshev VN.
Heterogeneity within animal thioredoxin reductases. Evidence for alternative first exon splicing.
J. Biol. Chem. 276: 3106-14, 2001.
146)  Hatfield DL, White M, Araoz C.
Nasal meningioma: report of one case and review.
J Ark Med Soc. 97: 416-7, 2001.
147)  Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun QA, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB, Burk RF, Berry MJ, Diamond AM, Lee BJ, Gladyshev VN, Hatfield DL.
Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA.
Mol. Cell. Biol. 21: 3840-52, 2001.
148)  Martin-Romero FJ, Kryukov GV, Lobanov AV, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL.
Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality.
J. Biol. Chem. 276: 29798-804, 2001.
149)  Berry MJ, Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Martin GW, Low SC, Mansell JB, Grundner-Culemann E, Harney JW, Driscoll DM, Hatfield DL.
Selenocysteine incorporation directed from the 3'UTR: characterization of eukaryotic EFsec and mechanistic implications.
Biofactors. 14: 17-24, 2001.
150)  Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM.
A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs.
EMBO J. 19: 306-14, 2000.
151)  Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.
Decoding apparatus for eukaryotic selenocysteine insertion.
EMBO Rep. 1: 158-63, 2000.
152)  Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR.
Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine.
J. Biol. Chem. 275: 28110-9, 2000.
153)  Kim LK, Matsufuji T, Matsufuji S, Carlson BA, Kim SS, Hatfield DL, Lee BJ.
Methylation of the ribosyl moiety at position 34 of selenocysteine tRNA[Ser]Sec is governed by both primary and tertiary structure.
RNA. 6: 1306-15, 2000.
154)  Mansur DB, Hao H, Gladyshev VN, Korotkov KV, Hu Y, Moustafa ME, El-Saadani MA, Carlson BA, Hatfield DL, Diamond AM.
Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines.
Biochem. Pharmacol. 60: 489-97, 2000.
155)  Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Kwon SY, Moustafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN.
Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology.
J. Biol. Chem. 275: 35540-7, 2000.
156)  Carlson BA, Kwon SY, Lee BJ, Hatfield D.
Yeast asparagine (Asn) tRNA without Q base promotes eukaryotic frameshifting more efficiently than mammalian Asn tRNAs with or without Q base.
Mol. Cells. 10: 113-8, 2000.
157)  Xu XM, Carlson BA, Kim LK, Lee BJ, Hatfield DL, Diamond AM.
Analysis of selenocysteine (Sec) tRNA([Ser]Sec) genes in Chinese hamsters.
Gene. 239: 49-53, 1999.
158)  Harris LF, Sullivan MR, Hatfield DL.
Directed molecular evolution.
Orig Life Evol Biosph. 29: 425-35, 1999.
159)  Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT.
Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase.
Proc. Natl. Acad. Sci. U.S.A. 96: 835-9, 1999.
160)  Huh JR, Park JM, Kim M, Carlson BA, Hatfield DL, Lee BJ.
Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.
Biochem. Biophys. Res. Commun. 256: 45-51, 1999.
161)  Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.
Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.
J. Biol. Chem. 274: 24522-30, 1999.
162)  Zhou X, Park SI, Moustafa ME, Carlson BA, Crain PF, Diamond AM, Hatfield DL, Lee BJ.
Selenium metabolism in Drosophila. Characterization of the selenocysteine tRNA population.
J. Biol. Chem. 274: 18729-34, 1999.
163)  Gladyshev VN, Hatfield DL.
Selenocysteine-containing proteins in mammals.
J. Biomed. Sci. 6: 151-60, 1999.
164)  Gladyshev VN, Krause M, Xu XM, Korotkov KV, Kryukov GV, Sun QA, Lee BJ, Wootton JC, Hatfield DL.
Selenocysteine-containing thioredoxin reductase in C. elegans.
Biochem. Biophys. Res. Commun. 259: 244-9, 1999.
165)  Xu XM, Zhou X, Carlson BA, Kim LK, Huh TL, Lee BJ, Hatfield DL.
The zebrafish genome contains two distinct selenocysteine tRNA[Ser]sec genes.
FEBS Lett. 454: 16-20, 1999.
166)  Carlson BA, Kwon SY, Chamorro M, Oroszlan S, Hatfield DL, Lee BJ.
Transfer RNA modification status influences retroviral ribosomal frameshifting.
Virology. 255: 2-8, 1999.
167)  Gladyshev VN, Jeang KT, Wootton JC, Hatfield DL.
A new human selenium-containing protein. Purification, characterization, and cDNA sequence.
J. Biol. Chem. 273: 8910-5, 1998.
168)  Gladyshev VN, Factor VM, Housseau F, Hatfield DL.
Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells.
Biochem. Biophys. Res. Commun. 251: 488-93, 1998.
169)  Moustafa ME, El-Saadani MA, Kandeel KM, Mansur DB, Lee BJ, Hatfield DL, Diamond AM.
Overproduction of selenocysteine tRNA in Chinese hamster ovary cells following transfection of the mouse tRNA[Ser]Sec gene.
RNA. 4: 1436-43, 1998.
170)  Chittum HS, Lane WS, Carlson BA, Roller PP, Lung FD, Lee BJ, Hatfield DL.
Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps.
Biochemistry. 37: 10866-70, 1998.
171)  Park JM, Hatfield DL, Lee BJ.
Cross-competition for TATA-binding protein between TATA boxes of the selenocysteine tRNA[Ser]Sec promoter and RNA polymerase II promoters.
Mol. Cells. 7: 72-7, 1997.
172)  Park JM, Lee JY, Hatfield DL, Lee BJ.
Differential mode of TBP utilization in transcription of the tRNA[Ser]Sec gene and TATA-less class III genes.
Gene. 196: 99-103, 1997.
173)  Chittum HS, Hill KE, Carlson BA, Lee BJ, Burk RF, Hatfield DL.
Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner.
Biochim. Biophys. Acta. 1359: 25-34, 1997.
174)  Hori K, Hatfield D, Maldarelli F, Lee BJ, Clouse KA.
Selenium supplementation suppresses tumor necrosis factor alpha-induced human immunodeficiency virus type 1 replication in vitro.
AIDS Res. Hum. Retroviruses. 13: 1325-32, 1997.
175)  Chittum HS, Baek HJ, Diamond AM, Fernandez-Salguero P, Gonzalez F, Ohama T, Hatfield DL, Kuehn M, Lee BJ.
Selenocysteine tRNA[Ser]Sec levels and selenium-dependent glutathione peroxidase activity in mouse embryonic stem cells heterozygous for a targeted mutation in the tRNA[Ser]Sec gene.
Biochemistry. 36: 8634-9, 1997.
176)  Park SI, Park JM, Chittum HS, Yang ES, Carlson BA, Lee BJ, Hatfield DL.
Selenocysteine tRNAs as central components of selenoprotein biosynthesis in eukaryotes.
Biomed. Environ. Sci. 10: 116-24, 1997.
177)  Park JM, Yang ES, Hatfield DL, Lee BJ.
Analysis of the selenocysteine tRNA[Ser]Sec gene transcription in vitro using Xenopus oocyte extracts.
Biochem. Biophys. Res. Commun. 226: 231-6, 1996.
178)  Diamond AM, Jaffe D, Murray JL, Safa AR, Samuels BL, Hatfield DL.
Lovastatin effects on human breast carcinoma cells. Differential toxicity of an adriamycin-resistant derivative and influence on selenocysteine tRNAS.
Biochem. Mol. Biol. Int. 38: 345-55, 1996.
179)  Ohama T, Jung JE, Park SI, Clouse KA, Lee BJ, Hatfield D.
Identification of new selenocysteine tRNA[SER]SEC isoacceptors in human cell lines.
Biochem. Mol. Biol. Int. 36: 421-7, 1995.
180)  Park JM, Choi IS, Kang SG, Lee JY, Hatfield DL, Lee BJ.
Upstream promoter elements are sufficient for selenocysteine tRNA[Ser]Sec gene transcription and to determine the transcription start point.
Gene. 162: 13-9, 1995.
181)  Ohama T, Choi IS, Hatfield DL, Johnson KR.
Mouse selenocysteine tRNA([Ser]Sec) gene (Trsp) and its localization on chromosome 7.
Genomics. 19: 595-6, 1994.
182)  Choi IS, Diamond AM, Crain PF, Kolker JD, McCloskey JA, Hatfield DL.
Reconstitution of the biosynthetic pathway of selenocysteine tRNAs in Xenopus oocytes.
Biochemistry. 33: 601-5, 1994.
183)  Berry MJ, Harney JW, Ohama T, Hatfield DL.
Selenocysteine insertion or termination: factors affecting UGA codon fate and complementary anticodon:codon mutations.
Nucleic Acids Res. 22: 3753-9, 1994.
184)  Ohama T, Yang DC, Hatfield DL.
Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
Arch. Biochem. Biophys. 315: 293-301, 1994.
185)  Kumar A, Kim HR, Sobol RW, Becerra SP, Lee BJ, Hatfield DL, Suhadolnik RJ, Wilson SH.
Mapping of nucleic acid binding in proteolytic domains of HIV-1 reverse transcriptase.
Biochemistry. 32: 7466-74, 1993.
186)  Hatfield D, Diamond A.
UGA: a split personality in the universal genetic code.
Trends Genet. 9: 69-70, 1993.
187)  Mitchell A, Bale AE, Lee BJ, Hatfield D, Harley H, Rundle SA, Fan YS, Fukushima Y, Shows TB, McBride OW.
Regional localization of the selenocysteine tRNA gene (TRSP) on human chromosome 19.
Cytogenet. Cell Genet. 61: 117-20, 1992.
188)  Hatfield D, Choi IS, Mischke S, Owens LD.
Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus.
Biochem. Biophys. Res. Commun. 184: 254-9, 1992.
189)  Hatfield DL, Levin JG, Rein A, Oroszlan S.
Translational suppression in retroviral gene expression.
Adv. Virus Res. 41: 193-239, 1992.
190)  Sobol RW, Suhadolnik RJ, Kumar A, Lee BJ, Hatfield DL, Wilson SH.
Localization of a polynucleotide binding region in the HIV-1 reverse transcriptase: implications for primer binding.
Biochemistry. 30: 10623-31, 1991.
191)  Hatfield D, Lee BJ, Hampton L, Diamond AM.
Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells.
Nucleic Acids Res. 19: 939-43, 1991.
192)  Hatfield DL, Lee BJ, Price NM, Stadtman TC.
Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena.
Mol. Microbiol. 5: 1183-6, 1991.
193)  Diamond AM, Montero-Puerner Y, Lee BJ, Hatfield D.
Selenocysteine inserting tRNAs are likely generated by tRNA editing.
Nucleic Acids Res. 18: 6727, 1990.
194)  Lee BJ, Rajagopalan M, Kim YS, You KH, Jacobson KB, Hatfield D.
Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom.
Mol. Cell. Biol. 10: 1940-9, 1990.
195)  Hatfield DL, Smith DW, Lee BJ, Worland PJ, Oroszlan S.
Structure and function of suppressor tRNAs in higher eukaryotes.
Crit. Rev. Biochem. Mol. Biol. 25: 71-96, 1990.
196)  Hatfield D, Oroszlan S.
The where, what and how of ribosomal frameshifting in retroviral protein synthesis.
Trends Biochem. Sci. 15: 186-90, 1990.
197)  Hatfield D, Feng YX, Lee BJ, Rein A, Levin JG, Oroszlan S.
Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV.
Virology. 173: 736-42, 1989.
198)  Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL.
Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA.
J. Biol. Chem. 264: 9724-7, 1989.
199)  Feng YX, Levin JG, Hatfield DL, Schaefer TS, Gorelick RJ, Rein A.
Suppression of UAA and UGA termination codons in mutant murine leukemia viruses.
J. Virol. 63: 2870-3, 1989.
200)  Lee BJ, Kang SG, Hatfield D.
Transcription of Xenopus selenocysteine tRNA Ser (formerly designated opal suppressor phosphoserine tRNA) gene is directed by multiple 5'-extragenic regulatory elements.
J. Biol. Chem. 264: 9696-702, 1989.
201)  Feng YX, Hatfield DL, Rein A, Levin JG.
Translational readthrough of the murine leukemia virus gag gene amber codon does not require virus-induced alteration of tRNA.
J. Virol. 63: 2405-10, 1989.
202)  McBride OW, Mitchell A, Lee BJ, Mullenbach G, Hatfield D.
Gene for selenium-dependent glutathione peroxidase maps to human chromosomes 3, 21 and X.
Biofactors. 1: 285-92, 1988.
203)  Hatfield D, Thorgeirsson SS, Copeland TD, Oroszlan S, Bustin M.
Immunopurification of the suppressor tRNA dependent rabbit beta-globin readthrough protein.
Biochemistry. 27: 1179-83, 1988.
204)  McBride OW, Rajagopalan M, Hatfield D.
Opal suppressor phosphoserine tRNA gene and pseudogene are located on human chromosomes 19 and 22, respectively.
J. Biol. Chem. 262: 11163-6, 1987.
205)  Lee BJ, de la Peña P, Tobian JA, Zasloff M, Hatfield D.
Unique pathway of expression of an opal suppressor phosphoserine tRNA.
Proc. Natl. Acad. Sci. U.S.A. 84: 6384-8, 1987.
206)  Hatfield D, Rice M.
Aminoacyl-tRNA(anticodon): codon adaptation in human and rabbit reticulocytes.
Biochem. Int. 13: 835-42, 1986.
207)  Smith DW, Hatfield DL.
Effects of post-transcriptional base modifications on the site-specific function of transfer RNA in eukaryote translation.
J. Mol. Biol. 189: 663-71, 1986.
208)  O'Neill VA, Eden FC, Pratt K, Hatfield DL.
A human opal suppressor tRNA gene and pseudogene.
J. Biol. Chem. 260: 2501-8, 1985.
209)  Pratt K, Eden FC, You KH, O'Neill VA, Hatfield D.
Conserved sequences in both coding and 5' flanking regions of mammalian opal suppressor tRNA genes.
Nucleic Acids Res. 13: 4765-75, 1985.
210)  Green MR, Hatfield DL, Miller MJ, Peacock AC.
Prolactin homogeneously induces the tRNA population of mouse mammary explants.
Biochem. Biophys. Res. Commun. 129: 233-9, 1985.
211)  Smith DW, McNamara AL, Mushinski JF, Hatfield DL.
Tumor-specific, hypomodified phenylalanyl-tRNA is utilized in translation in preference to the fully modified isoacceptor of normal cells.
J. Biol. Chem. 260: 147-51, 1985.
212)  Wilson MJ, Hatfield DL.
Incorporation of modified amino acids into proteins in vivo.
Biochim. Biophys. Acta. 781: 205-15, 1984.
213)  Hatfield DL, Dudock BS, Eden FC.
Characterization and nucleotide sequence of a chicken gene encoding an opal suppressor tRNA and its flanking DNA segments.
Proc. Natl. Acad. Sci. U.S.A. 80: 4940-4, 1983.
214)  Hatfield D, Rice M, Hession CA, Melera PW.
Aminoacyl-tRNAs from Physarum polycephalum: patterns of codon recognition.
J. Bacteriol. 151: 1013-21, 1982.
215)  Hatfield D, Diamond A, Dudock B.
Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA.
Proc. Natl. Acad. Sci. U.S.A. 79: 6215-9, 1982.
216)  Hatfield D, Varricchio F, Rice M, Forget BG.
The aminoacyl-tRNA population of human reticulocytes.
J. Biol. Chem. 257: 3183-8, 1982.
217)  Wilson MJ, Hatfield DL, Poirier LA.
Aminoacylation of ethionine to rat liver tRNAMet and its incorporation into protein.
FEBS Lett. 128: 157-60, 1981.
218)  Hatfield DL, Rice MJ, Mushinski JF.
Comparison of the codon recognition properties and of the utilization of normal and tumor specific Phe-tRNAs in protein synthesis.
Cancer Lett. 12: 251-8, 1981.
219)  Diamond A, Dudock B, Hatfield D.
Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon.
Cell. 25: 497-506, 1981.
220)  Smith DW, McNamara AL, Rice M, Hatfield DL.
The effects of a post-transcriptional modification on the function of tRNALys isoaccepting species in translation.
J. Biol. Chem. 256: 10033-6, 1981.
221)  Hatfield D, Richer L, Lyon J, Rice M.
Relative utilization of mammalian Lys-tRNA isoacceptors in protein synthesis.
FEBS Lett. 113: 249-52, 1980.
222)  Hatfield D, Matthews CR, Rice M.
Aminoacyl-transfer RNA populations in mammalian cells chromatographic profiles and patterns of codon recognition.
Biochim. Biophys. Acta. 564: 414-23, 1979.
223)  Hatfield D, Rice M, Hoffman E.
Patterns of codon recognition by isoacceptor amino acyl-tRNAs from Hymenoptera.
Biochem. Biophys. Res. Commun. 85: 436-44, 1978.
224)  Hatfield D, Rice M.
Patterns of codon recognition by isoacceptor aminoacyl-tRNAs from wheat germ.
Nucleic Acids Res. 5: 3491-502, 1978.
225)  Hofnung M, Hatfield D, Schwartz M.
malB region in Escherichia coli K-12: characterization of new mutations.
J. Bacteriol. 117: 40-7, 1974.
226)  Hatfield D.
Recognition of nonsense codons in mammalian cells.
Proc. Natl. Acad. Sci. U.S.A. 69: 3014-8, 1972.
227)  Hatfield D, Nirenberg M.
Binding of radioactive oligonucleotides to ribosomes.
Biochemistry. 10: 4318-23, 1971.
228)  Hofnung M, Schwartz M, Hatfield D.
Complementation studies in the maltose-A region of the Escherichia coli K12 genetic map.
J. Mol. Biol. 61: 681-94, 1971.
229)  Hatfield D, Portugal FH, Caicuts M.
Transfer RNA specificity in mammalian tissues and codon responses of seryl transfer RNA.
Cancer Res. 31: 697-700, 1971.
230)  Hatfield D, Portugal FH.
Seryl-tRNA in mammalian tissues: chromatographic differences in brain and liver and a specific response to the codon, UGA.
Proc. Natl. Acad. Sci. U.S.A. 67: 1200-6, 1970.
231)  Hatfield D, Hofnung M, Schwartz M.
Genetic analysis of the maltose A region in Escherichia coli.
J. Bacteriol. 98: 559-67, 1969.
232)  Hatfield D, Hofnung M, Schwartz M.
Nonsense mutations in the maltose A region of the genetic map of Escherichia coli.
J. Bacteriol. 100: 1311-5, 1969.
233)  Hatfield D.
Oligonucleotide-ribosome-AA-sRNA interactions.
Cold Spring Harb. Symp. Quant. Biol. 31: 619-22, 1966.
234)  Nirenberg M, Caskey T, Marshall R, Brimacombe R, Kellogg D, Doctor B, Hatfield D, Levin J, Rottman F, Pestka S, Wilcox M, Anderson F.
The RNA code and protein synthesis.
Cold Spring Harb. Symp. Quant. Biol. 31: 11-24, 1966.
J. Biol. Chem. 239: 2580-6, 1964.
J. Biol. Chem. 239: 2587-92, 1964.
Biochim. Biophys. Acta. 91: 326-8, 1964.
Biochim. Biophys. Acta. 91: 163-6, 1964.
Biosynthesis of a new xanthine ribonucleotide by beef erythrocytes.
Biochim. Biophys. Acta. 68: 322-4, 1963.
Biosynthesis of 3-ribosyluric acid (uric acid riboside).
Biochim. Biophys. Acta. 62: 185-7, 1962.
241)  Hatfield DL, Van Baalen C, Forrest HS.
Pteridines in blue green algae.
Plant Physiol. 36: 240-3, 1961.
Characterization of a second yellow compound from Drosophila melanogaster.
Nature. 183: 1269-70, 1959.
Click Here to View Collapsed Bibliography.

This page was last updated on 6/27/2014.