Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Wakefield Website

Lalage M. Wakefield, D.Phil.

Selected Publications

1)  Tang B, Böttinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, Letterio JJ, Wakefield LM.
Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency.
Nat Med. 4: 802-7, 1998.
2)  Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM.
Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects.
J Clin Invest. 109: 1607-15, 2002.
3)  Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM.
TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression.
J Clin Invest. 112: 1116-24, 2003.
4)  Tang B, Yoo N, Vu M, Mamura M, Nam JS, Ooshima A, Du Z, Desprez PY, Anver MR, Michalowska AM, Shih J, Parks WT, Wakefield LM.
Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model.
Cancer Res. 67: 8643-52, 2007.
5)  Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C, Kohn E, Tang B, Sabzevari H, Anver MR, Lawrence S, Danielpour D, Lonning S, Berzofsky JA, Wakefield LM.
An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments.
Cancer Res. 68: 3835-43, 2008.
6)  Subramanian M, Francis P, Bilke S, Li XL, Hara T, Lu X, Jones MF, Walker RL, Zhu Y, Pineda M, Lee C, Varanasi L, Yang Y, Martinez LA, Luo J, Ambs S, Sharma S, Wakefield LM, Meltzer PS, Lal A.
A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis.
Oncogene. [Epub ahead of print], 2014.
7)  Li XL, Hara T, Choi Y, Subramanian M, Francis P, Bilke S, Walker RL, Pineda M, Zhu Y, Yang Y, Luo J, Wakefield LM, Brabletz T, Park BH, Sharma S, Chowdhury D, Meltzer PS, Lal A.
A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster.
Mol. Cell. Biol. 34: 533-50, 2014.
8)  Sato M, Kadota M, Tang B, Yang HH, Yang YA, Shan M, Weng J, Welsh MA, Flanders KC, Nagano Y, Michalowski AM, Clifford RJ, Lee MP, Wakefield LM.
An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-beta in human breast cancer.
Breast Cancer Res. 16: R57, 2014.
9)  Chen X, Yang Y, Zhou Q, Weiss JM, Howard OZ, McPherson JM, Wakefield LM, Oppenheim JJ.
Effective chemoimmunotherapy with anti-TGFß antibody and cyclophosphamide in a mouse model of breast cancer.
PLoS ONE. 9: e85398, 2014.
10)  Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS.
Pillars Article: production of transforming growth factor ß by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986. 163: 1037-1050.
J. Immunol. 192: 2939-52, 2014.
11)  Wakefield LM, Hill CS.
Beyond TGFß: roles of other TGFß superfamily members in cancer.
Nat. Rev. Cancer. 13: 328-41, 2013.
12)  Luger D, Yang YA, Raviv A, Weinberg D, Banerjee S, Lee MJ, Trepel J, Yang L, Wakefield LM.
Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects.
PLoS ONE. 8: e76115, 2013.
13)  Hu Y, Bai L, Geiger T, Goldberger N, Walker RC, Green JE, Wakefield LM, Hunter KW.
Genetic background may contribute to PAM50 gene expression breast cancer subtype assignments.
PLoS ONE. 8: e72287, 2013.
14)  Stuelten CH, Cervoni-Curet FN, Busch JI, Sutton E, Webster JD, Kavalukas SL, Wakefield LM, Barbul A, Niederhuber JE.
SDF-1a Mediates Wound-Promoted Tumor Growth in a Syngeneic Orthotopic Mouse Model of Breast Cancer.
PLoS ONE. 8: e60919, 2013.
15)  Luger D, Wakefield L.
Ben-Baruch A, eds.
Inflammation and beyond: complex roles for TGF-beta in the tumor microenvironment. In: The Inflammatory Milieu of Tumors: Cytokines and Chemokines that Affect Tumor Growth and Metastasis.
Bentham Science Publishers; 2012. p. 121-152 In Press. [Book Chapter]
16)  Kohn EA, Yang Y, Du Z, Nagano Y, Van Schyndle CM, Herrmann MA, Heldman M, Chen J, Stuelten CH, Flanders KC, Wakefield LM.
Biological responses to TGF-beta in the mammary epithelium show a complex dependency on Smad3 gene dosage with important implications for tumor progression.
Mol. Cancer Res. 10: 1389-99, 2012.
17)  Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, Ikeda K, Luecke H, Wakefield LM, Gonzalez FJ.
TGF-ß-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.
J. Lipid Res. 53: 2698-707, 2012.
18)  Kohn EA, Du Z, Sato M, Van Schyndle CM, Welsh MA, Yang Y, Stuelten CH, Tang B, Ju W, Bottinger EP, Wakefield LM.
A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFbeta signaling in the mammary gland.
Breast Cancer Res. 12: R83, 2010.
19)  Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, Dunn BK, Wakefield LM, Lee MP.
Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines.
PLoS ONE. 5: e9201, 2010.
20)  Figueroa JD, Flanders KC, Garcia-Closas M, Anderson WF, Yang XR, Matsuno RK, Duggan MA, Pfeiffer RM, Ooshima A, Cornelison R, Gierach GL, Brinton LA, Lissowska J, Peplonska B, Wakefield LM, Sherman ME.
Expression of TGF-beta signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics.
Breast Cancer Res. Treat. 121: 727-35, 2010.
21)  Mendoza A, Hong SH, Osborne T, Khan MA, Campbell K, Briggs J, Eleswarapu A, Buquo L, Ren L, Hewitt SM, Dakir el H, Dakir el-H, Garfield S, Walker R, Merlino G, Green JE, Hunter KW, Wakefield LM, Khanna C.
Modeling metastasis biology and therapy in real time in the mouse lung.
J. Clin. Invest. 120: 2979-88, 2010.
22)  Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE.
Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer.
PLoS ONE. 5: e9832, 2010.
23)  Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere S, Kageyama S, Fukuoka J, Nagata T, Tsukada K, Dunn BK, Wakefield LM, Lee MP.
Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA.
Cancer Res. 69: 7357-65, 2009.
24)  Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB.
Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway.
Cancer Res. 69: 5918-26, 2009.
25)  Kim R, Kim S, Roh K, Park S, Park J, Kang K, Kong G, Tang B, Yang Y, Kohn EA, Wakefield LM, Nam J.
Ras activation contributes to the maintenance and expansion of Sca-1(pos) cells in a mouse model of breast cancer.
Cancer Lett. 287: 172-81, 2009.
26)  Park HY, Wakefield LM, Mamura M.
Regulation of tumor immune surveillance and tumor immune subversion by tgf-Beta.
Immune Netw. 9: 122-6, 2009.
27)  di Bari MG, Lutsiak ME, Takai S, Mostböck S, Farsaci B, Tolouei Semnani R, Wakefield LM, Schlom J, Sabzevari H.
TGF-beta modulates the functionality of tumor-infiltrating CD8(+) T cells through effects on TCR signaling and Spred1 expression.
Cancer Immunol. Immunother. 58: 1809-18, 2009.
28)  Laverty HG, Wakefield LM, Occleston NL, O'Kane S, Ferguson MW.
TGF-beta3 and cancer: A review.
Cytokine Growth Factor Rev. 20: 305-17, 2009.
29)  Flanders KC, Wakefield LM.
Transforming growth factor-(beta)s and mammary gland involution; functional roles and implications for cancer progression.
J Mammary Gland Biol Neoplasia. 14: 131-44, 2009.
30)  Stuelten CH, Barbul A, Busch JI, Sutton E, Katz R, Sato M, Wakefield LM, Roberts AB, Niederhuber JE.
Acute wounds accelerate tumorigenesis by a T cell-dependent mechanism.
Cancer Res. 68: 7278-82, 2008.
31)  Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S, Berzofsky JA, Wakefield LM.
Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17.
Cancer Res. 68: 3915-23, 2008.
32)  Varticovski L, Hollingshead MG, Robles AI, Wu X, Cherry J, Munroe DJ, Lukes L, Anver MR, Carter JP, Borgel SD, Stotler H, Bonomi CA, Nunez NP, Hursting SD, Qiao W, Deng CX, Green JE, Hunter KW, Merlino G, Steeg PS, Wakefield LM, Barrett JC.
Accelerated preclinical testing using transplanted tumors from genetically engineered mouse breast cancer models.
Clin. Cancer Res. 13: 2168-77, 2007.
33)  Nam JS, Hirohashi S, Wakefield LM.
Dysadherin: A new player in cancer progression.
Cancer Lett. 255: 161-9, 2007.
34)  Wakefield LM, Stuelten C.
Keeping order in the neighborhood: new roles for TGFbeta in maintaining epithelial homeostasis.
Cancer Cell. 12: 293-5, 2007.
35)  Stuelten CH, Kamaraju AK, Wakefield LM, Roberts AB.
Lentiviral reporter constructs for fluorescence tracking of the temporospatial pattern of Smad3 signaling.
BioTechniques. 43: 289-90, 292, 294, 2007.
36)  Nam JS, Suchar AM, Kang MJ, Stuelten CH, Tang B, Michalowska AM, Fisher LW, Fedarko NS, Jain A, Pinkas J, Lonning S, Wakefield LM.
Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer.
Cancer Res. 66: 6327-35, 2006.
37)  Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM, Jordan VC, Hirohashi S, Wakefield LM.
Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells.
Cancer Res. 66: 7176-84, 2006.
38)  Wakefield L, Hunter K, eds.
Breast Disease. 26: 1-162, 2006.
[Journal (Editor)]
39)  Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ, McKerrow JH, Wakefield LM, Letterio JJ, Wynn TA.
IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent.
J Immunol. 173: 4020-9, 2004.
40)  Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB.
Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines.
Cancer Res. 63: 8284-92, 2003.
41)  Wakefield LM, Thordarson G, Nieto AI, Shyamala G, Galvez JJ, Anver MR, Cardiff RD.
Spontaneous pituitary abnormalities and mammary hyperplasia in FVB/NCr mice: implications for mouse modeling.
Comp Med. 53: 424-32, 2003.
42)  Roberts AB, Wakefield LM.
The two faces of transforming growth factor beta in carcinogenesis.
Proc Natl Acad Sci U S A. 100: 8621-3, 2003.
43)  Yang YA, Tang B, Robinson G, Hennighausen L, Brodie SG, Deng CX, Wakefield LM.
Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta.
Cell Growth Differ. 13: 123-30, 2002.
44)  Wakefield LM, Roberts AB.
TGF-beta signaling: positive and negative effects on tumorigenesis.
Curr Opin Genet Dev. 12: 22-9, 2002.
45)  Wakefield LM, Piek E, Böttinger EP.
TGF-beta signaling in mammary gland development and tumorigenesis.
J Mammary Gland Biol Neoplasia. 6: 67-82, 2001.
46)  Zujewski J, Vaughn-Cooke A, Flanders KC, Eckhaus MA, Lubet RA, Wakefield LM.
Transforming growth factors-beta are not good biomarkers of chemopreventive efficacy in a preclinical breast cancer model system.
Breast Cancer Res. 3: 66-75, 2001.
47)  Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE.
The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting.
Oncogene. 19: 968-88, 2000.
48)  Wakefield LM, Yang YA, Dukhanina O.
Transforming growth factor-beta and breast cancer: Lessons learned from genetically altered mouse models.
Breast Cancer Res. 2: 100-6, 2000.
49)  Tang B, de Castro K, Barnes HE, Parks WT, Stewart L, Böttinger EP, Danielpour D, Wakefield LM.
Loss of responsiveness to transforming growth factor beta induces malignant transformation of nontumorigenic rat prostate epithelial cells.
Cancer Res. 59: 4834-42, 1999.
50)  Böttinger EP, Jakubczak JL, Roberts IS, Mumy M, Hemmati P, Bagnall K, Merlino G, Wakefield LM.
Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas.
EMBO J. 16: 2621-33, 1997.
51)  Böttinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM.
Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene.
Cancer Res. 57: 5564-70, 1997.
Click Here to View Collapsed Bibliography.

This page was last updated on 8/12/2014.