Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Palena Website

Claudia M. Palena, Ph.D.

Selected Publications

1)  Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J, Palena C.
The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells.
J. Clin. Invest. 120: 533-44, 2010.
2)  Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C.
IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells.
Cancer Res. 71: 5296-306, 2011.
3)  Huang B, Cohen JR, Fernando RI, Hamilton DH, Litzinger MT, Hodge JW, Palena C.
The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies.
Cell Death Dis. 4: e682, 2013.
4)  Hamilton DH, Huang B, Fernando RI, Tsang K, Palena C.
WEE1 inhibition alleviates resistance to immune attack of tumor cells undergoing epithelial-mesenchymal transition.
Cancer Res. 74: 2510-9, 2014.
5)  Palena C, Roselli M, Litzinger MT, Ferroni P, Costarelli L, Spila A, Cavaliere F, Huang B, Fernando RI, Hamilton DH, Jochems C, Tsang KY, Cheng Q, Kim Lyerly H, Schlom J, Guadagni F.
Overexpression of the EMT Driver Brachyury in Breast Carcinomas: Association With Poor Prognosis.
J. Natl. Cancer Inst. 106, 2014.
6)  Schlom J, Hodge JW, Palena C, Greiner JW, Tsang KY, Farsaci B, Madan RA, Gulley JL.
Prendergast G, Jaffee E, eds.
Recombinant TRICOM-based therapeutic cancer vaccines: lessons learned. In: Cancer Immunotherapy: Immune Suppression and Tumor Growth. Volume Second edition.
Elsevier; 2014. In Press. [Book Chapter]
7)  Palena C, Fernando RI, Hamilton DH.
An immunotherapeutic intervention against tumor progression: Targeting a driver of the epithelial-to-mesenchymal transition.
Oncoimmunology. 3: e27220, 2014.
8)  Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL.
Therapeutic cancer vaccines.
Adv. Cancer Res. 121: 67-124, 2014.
9)  Ardiani A, Gameiro SR, Palena C, Hamilton DH, Kwilas A, King TH, Schlom J, Hodge JW.
Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process.
Cancer Res. 74: 1945-57, 2014.
10)  Palena C, Schlom J.
Marshall J, eds.
Brachyury. In: Cancer Therapeutic Targets.
Berlin Heidelberg: Springer-Verlag; 2013. In Press. [Book Chapter]
11)  Schlom J, Palena C, Gulley JL, Greiner JW, Tsang KY, Madan RA, Hodge JW.
Lattime E, Gerson S, eds.
The use of T-cell costimulation to enhance the immunogenicity of tumors. In: Gene Therapy of Cancer: Translational Approaches from Preclinical Studies to Clinical Implementation, Third Edition. Volume Third edition.
Atlanta: Elsevier; 2013. p. 315-334 [Book Chapter]
12)  Farsaci B, Kim PS, Hodge JW, Palena C, Gulley JL, Schlom J.
Giaccone G, Soria J, eds.
Vaccine therapy and integration with other modalities. In: Targeted Therapies in Oncology. Volume Second Edition.
Boca Raton FL: CRC Press; 2013. p. 340-366 [Book Chapter]
13)  Larocca C, Cohen JR, Fernando RI, Huang B, Hamilton DH, Palena C.
An autocrine loop between TGF-ß1 and the transcription factor Brachyury controls the transition of human carcinoma cells into a mesenchymal phenotype.
Mol. Cancer Ther. 12: 1805-15, 2013.
14)  Hodge JW, Garnett CT, Farsaci B, Palena C, Tsang K, Ferrone S, Gameiro SR.
Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death.
Int. J. Cancer. 133: 624-36, 2013.
15)  Hamilton DH, Litzinger MT, Jales A, Huang B, Fernando RI, Hodge JW, Ardiani A, Apelian D, Schlom J, Palena C.
Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine.
Oncotarget. 4: 1777-90, 2013.
16)  Roselli M, Fernando RI, Guadagni F, Spila A, Alessandroni J, Palmirotta R, Costarelli L, Litzinger M, Hamilton DH, Huang B, Tucker JA, Tsang KY, Schlom J, Palena C.
Brachyury, a driver of the epithelial-mesenchymal transition, is overexpressed in human lung tumors: an opportunity for novel interventions against lung cancer.
Clin Cancer Res. 18: 3868-79, 2012.
17)  Hamilton DH, Litzinger MT, Fernando RI, Huang B, Palena C.
Cancer vaccines targeting the epithelial-mesenchymal transition: tissue distribution of brachyury and other drivers of the mesenchymal-like phenotype of carcinomas.
Semin. Oncol. 39: 358-66, 2012.
18)  Palena C, Hamilton DH, Fernando RI.
Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment.
Future Oncol. 8: 713-22, 2012.
19)  Palena C, Fernando RI, Litzinger MT, Hamilton DH, Huang B, Schlom J.
Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells.
Exp. Biol. Med. (Maywood). 236: 537-45, 2011.
20)  Litzinger MT, Foon KA, Tsang K, Schlom J, Palena C.
Comparative analysis of MVA-CD40L and MVA-TRICOM vectors for enhancing the immunogenicity of chronic lymphocytic leukemia (CLL) cells.
Leuk Res. 34: 1351-7, 2010.
21)  Cereda V, Poole D, Palena C, Das S, Bera T, Remondo C, Gulley J, Arlen P, Yokokawa J, Pastan I, Schlom J, Tsang K.
New gene expressedin prostate (NGEP): a potential target for T cell-mediated prostate cancer immunotherapy.
Cancer Immunol Immunother. 59: 63-71, 2010.
22)  Palena C, Schlom J.
Vaccines against human carcinomas: strategies to improve antitumor immune responses.
J. Biomed. Biotechnol. 2010: 380697, 2010.
23)  Litzinger M, Foon K, Sabzevari H, Tsang K, Schlom J, Palena C.
Chronic lymphocytic leukemia (CLL) cells genetically modified to express B7-1, ICAM-1, and LFA-3 confer APC capacity to T cells from CLL patients.
Cancer Immunol Immunother. 58: 955-65, 2009.
24)  Gulley JL, Arlen PM, Tsang KY, Yokokawa J, Palena C, Poole DJ, Remondo C, Cereda V, Jones JL, Pazdur MP, Higgins JP, Hodge JW, Steinberg SM, Kotz H, Dahut WL, Schlom J.
Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma.
Clin. Cancer Res. 14: 3060-9, 2008.
25)  Yokokawa J, Bera T, Palena C, Cereda V, Remondo C, Gulley J, Arlen P, Pastan I, Schlom J, Tsang K.
Identification of cytotoxic T-lymphocyte epitope(s) and its agonist epitope(s) of a novel target for vaccine therapy (PAGE4).
Int J Cancer. 121: 595-605, 2007.
26)  Palena C, Polev D, Tsang K, Fernando R, Litzinger M, Krukovskaya L, Baranova A, Kozlov A, Schlom J.
The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell mediated cancer immunotherapy.
Clin. Cancer Res. 13: 2471-78, 2007.
27)  Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C.
The IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity.
Blood. 110: 3192-201, 2007.
28)  Palena C, Abrams SI, Schlom J, Hodge JW.
Cancer vaccines: preclinical studies and novel strategies.
Adv. Cancer Res. 95: 115-45, 2006.
29)  Gelbard A, Garnett CT, Abrams SI, Patel V, Gutkind JS, Palena C, Tsang KY, Schlom J, Hodge JW.
Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis.
Clin. Cancer Res. 12: 1897-905, 2006.
30)  Tsang KY, Palena C, Yokokawa J, Arlen PM, Gulley JL, Mazzara GP, Gritz L, Yafal AG, Ogueta S, Greenhalgh P, Manson K, Panicali D, Schlom J.
Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules.
Clin Cancer Res. 11: 1597-607, 2005.
31)  Yokokawa J, Palena C, Arlen P, Hassan R, Ho M, Pastan I, Schlom J, Tsang KY.
Identification of novel human CTL epitopes and their agonist epitopes of mesothelin.
Clin Cancer Res. 11: 6342-51, 2005.
32)  Palena C, Foon KA, Panicali D, Yafal AG, Chinsangaram J, Hodge JW, Schlom J, Tsang KY.
Potential approach to immunotherapy of chronic lymphocytic leukemia (CLL): enhanced immunogenicity of CLL cells via infection with vectors encoding for multiple costimulatory molecules.
Blood. 106: 3515-23, 2005.
33)  Tsang KY, Palena C, Gulley J, Arlen P, Schlom J.
A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1.
Clin Cancer Res. 10: 2139-49, 2004.
34)  Schlom J, Palena C, Greiner JW, Tsang KY, Grosenbach DW, Sabzevari H, Gulley JL, Arlen PM, Kass E, Hodge JW.
Combinatorial vaccine strategies and the use of molecular arrays to characterize T-cell activation.
Dev Biol (Basel). 116: 27-47, 2004.
35)  Palena C, Zhu M, Schlom J, Tsang KY.
Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen-presenting cells.
Blood. 104: 192-9, 2004.
36)  Garnett CT, Palena C, Chakraborty M, Chakarborty M, Tsang KY, Schlom J, Hodge JW.
Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes.
Cancer Res. 64: 7985-94, 2004.
37)  Arlen PM, Gulley JL, Palena C, Marshall J, Schlom J, Tsang KY.
A novel ELISPOT assay to enhance detection of antigen-specific T cells employing antigen-presenting cells expressing vector-driven human B7-1.
J Immunol Methods. 279: 183-92, 2003.
38)  Palena C, Schlom J, Tsang KY.
Differential gene expression profiles in a human T-cell line stimulated with a tumor-associated self-peptide versus an enhancer agonist peptide.
Clin Cancer Res. 9: 1616-27, 2003.
39)  Palena C, Arlen P, Zeytin H, Greiner JW, Schlom J, Tsang KY.
Enhanced expression of lymphotactin by CD8+ T cells is selectively induced by enhancer agonist peptides of tumor-associated antigens.
Cytokine. 24: 128-42, 2003.
Click Here to View Collapsed Bibliography.

This page was last updated on 6/17/2014.