Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health
CCR - For Our Staff| Home |

Our Science – Doyle Website

Shannon M. Doyle, Ph.D.

Selected Publications

1)  Doyle SM, Genest O, Wickner S.
Protein rescue from aggregates by powerful molecular chaperone machines.
Nat. Rev. Mol. Cell Biol. 14: 617-29, 2013.
2)  Doyle SM, Hoskins JR, Wickner S.
DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine.
J. Biol. Chem. 287: 28470-9, 2012.
3)  Zhang T, Ploetz EA, Nagy M, Doyle SM, Wickner S, Smith PE, Zolkiewski M.
Flexible connection of the N-terminal domain in ClpB modulates substrate binding and the aggregate reactivation efficiency.
Proteins. 80: 2758-68, 2012.
4)  Evans ML, Schmidt JC, Ilbert M, Doyle SM, Quan S, Bardwell JC, Jakob U, Wickner S, Chapman MR.
E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly.
Prion. 5, 2011.
5)  Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S.
Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling.
Proceedings of the National Academy of Sciences of the United States of America. 2011.
6)  Miot M, Reidy M, Doyle SM, Hoskins JR, Johnston DM, Genest O, Vitery MC, Masison DC, Wickner S.
Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation.
Proc. Natl. Acad. Sci. U.S.A. 108: 6915-20, 2011.
7)  Hoskins JR, Doyle SM, Wickner S.
Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein.
Proc. Natl. Acad. Sci. U.S.A. 106: 22233-8, 2009.
8)  Doyle SM, Wickner S.
Hsp104 and ClpB: protein disaggregating machines.
Trends Biochem. Sci. 34: 40-8, 2009.
9)  Doyle SM, Shorter J, Zolkiewski M, Hoskins JR, Lindquist S, Wickner S.
Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity.
Nat. Struct. Mol. Biol. 14: 114-22, 2007.
10)  Doyle SM, Hoskins JR, Wickner S.
Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
Proc. Natl. Acad. Sci. U.S.A. 104: 11138-44, 2007.
11)  Parent KN, Doyle SM, Anderson E, Teschke CM.
Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly.
Virology. 340: 33-45, 2005.
12)  Doyle SM, Anderson E, Parent KN, Teschke CM.
A concerted mechanism for the suppression of a folding defect through interactions with chaperones.
J. Biol. Chem. 279: 17473-82, 2004.
13)  Doyle SM, Bilsel O, Teschke CM.
SecA folding kinetics: a large dimeric protein rapidly forms multiple native states.
J. Mol. Biol. 341: 199-214, 2004.
14)  Doyle SM, Anderson E, Zhu D, Braswell EH, Teschke CM.
Rapid unfolding of a domain populates an aggregation-prone intermediate that can be recognized by GroEL.
J. Mol. Biol. 332: 937-51, 2003.
15)  de Beus MD, Doyle SM, Teschke CM.
GroEL binds a late folding intermediate of phage P22 coat protein.
Cell Stress Chaperones. 5: 163-72, 2000.
16)  Doyle SM, Braswell EH, Teschke CM.
SecA folds via a dimeric intermediate.
Biochemistry. 39: 11667-76, 2000.
17)  Fong DG, Doyle SM, Teschke CM.
The folded conformation of phage P22 coat protein is affected by amino acid substitutions that lead to a cold-sensitive phenotype.
Biochemistry. 36: 3971-80, 1997.
Click Here to View Collapsed Bibliography.

This page was last updated on 3/5/2014.