Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health www.cancer.gov
CCR - For Our Staff| Home |

Our Science – Klar Website

Amar J.S. Klar, Ph.D.

Selected Publications

1)  Klar A, Ishikawa K, Moore S.
Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyers S, eds.
A unique recombination mechanism of the mating/cell-type switching of fission yeasts: a review. In: Mobile DNA III.
Washington, DC: American Society of Microbiology Press; 2014. In Press. [Book Chapter]
2)  Klar A.
Handedness, dexterity, and scalp hair whorls.
Ann Cardiothorac Surg. 2014.
In Press. [Journal]
3)  Klar A.
Selective chromatid segregation mechanism explains the etiology of of chromosome 11 translocation-associated psychotic disorders: a review.
J Neurol Disord. 2014.
In Press. [Journal]
4)  Klar A.
Selective chromatid segregation mechanism invoked for the human congenital mirror hand movement disorder development by RAD51 mutations: A hypothesis.
Int J Biol Sci. 2014.
In Press. [Journal]
5)  Klar AJ.
Mating-type genes and their switching in yeasts. In: Brenner's Encyclopedia of Genetics. Volume 4.
New York: Elsevier; 2013. p. 325-327 [Book Chapter]
6)  Sauer S, Burkett SS, Lewandoski M, Klar AJ.
A CO-FISH assay to assess sister chromatid segregation patterns in mitosis of mouse embryonic stem cells.
Chromosome Res. 21: 311-28, 2013.
[Journal]
7)  Stewart BA, Klar AJ.
Can bronchoscopic airway anatomy be an indicator of autism?.
J Autism Dev Disord. 43: 911-6, 2013.
[Journal]
8)  Sauer S, Klar A.
Comment on “Chromosome-specific nonrandom sister chromatid segregation during stem-cell division.
Nature. 498: 251-4, 2013.
[Journal]
9)  Yu C, Bonaduce MJ, Klar AJ.
Defining the epigenetic mechanism of asymmetric cell division of Schizosaccharomyces japonicus yeast.
Genetics. 193: 85-94, 2013.
[Journal]
10)  Harbinder S, Lazzara C, Klar A.
Implication of the Strand-Specific Imprinting and Segregation Model: Integrating in Utero Hormone Exposure, Stem Cell and Visceral Laterality Asymmetry Hypotheses in Breast Cancer Aetiology.
Hereditary Genet. S2: 005, 2013.
[Journal]
11)  Klar AJ.
Schizosaccharomyces japonicus yeast poised to become a favorite experimental organism for eukaryotic research.
G3 (Bethesda). 3: 1869-73, 2013.
[Journal]
12)  Klar AJ, Bonaduce MJ.
Unbiased segregation of fission yeast chromosome 2 strands to daughter cells.
Chromosome Res. 21: 297-309, 2013.
[Journal]
13)  Yu C, Bonaduce MJ, Klar AJ.
Going in the right direction: mating-type switching of Schizosaccharomyces pombe is controlled by judicious expression of two different swi2 transcripts.
Genetics. 190: 977-87, 2012.
[Journal]
14)  Sauer S, Klar AJ.
Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene.
Front Oncol. 2: 166, 2012.
[Journal]
15)  Yu C, Bonaduce MJ, Klar AJ.
Remarkably High Rate of DNA Amplification Promoted by the Mating-Type Switching Mechanism in Schizosaccharomyces pombe.
Genetics. 191: 285-9, 2012.
[Journal]
16)  Klar AJ.
Breast cancer predisposition and brain hemispheric laterality specification likely share a common genetic cause.
Breast Dis. 33: 49-52, 2011.
[Journal]
17)  Klar AJ.
A proposal for re-defining the way the aetiology of schizophrenia and bipolar human psychiatric diseases is investigated.
J. Biosci. 35: 11-5, 2010.
[Journal]
18)  Armakolas A, Koutsilieris M, Klar AJ.
Discovery of the mitotic selective chromatid segregation phenomenon and its implications for vertebrate development.
Curr. Opin. Cell Biol. 22: 81-7, 2010.
[Journal]
19)  Klar AJ.
The yeast mating-type switching mechanism: a memoir.
Genetics. 186: 443-9, 2010.
[Journal]
20)  Singh G, Klar AJ.
Mutations in deoxyribonucleotide biosynthesis pathway cause spreading of silencing across heterochromatic barriers at the mating-type region of the fission yeast.
Yeast. 25: 117-28, 2008.
[Journal]
21)  Eydmann T, Sommariva E, Inagawa T, Mian S, Klar AJ, Dalgaard JZ.
Rtf1-mediated eukaryotic site-specific replication termination.
Genetics. 180: 27-39, 2008.
[Journal]
22)  Klar AJ.
Scalp hair-whorl orientation of Japanese individuals is random; hence, the trait's distribution is not genetically determined.
Semin. Cell Dev. Biol. 2008.
[Journal]
23)  Klar AJ.
Support for the selective chromatid segregation hypothesis advanced for the mechanism of left-right body axis development in mice.
Breast disease. 29: 47-56, 2008.
[Journal]
24)  Singh G, Klar AJ.
A Hypothesis for How Chromosome 11 Translocations Cause Psychiatric Disorders.
Genetics. 177(2): 1259-1262, 2007.
[Journal]
25)  Armakolas A, Klar AJ.
Left-right dynein motor implicated in selective chromatid segregation in mouse cells.
Science. 315: 100-1, 2007.
[Journal]
26)  Klar AJ.
Lessons Learned from Studies of Fission Yeast Mating-Type Switching and Silencing.
Annu Rev Genet. 41: 213-236, 2007.
[Journal]
27)  Yamada-Inagawa T, Klar AJ, Dalgaard JZ.
S.pombe switches mating-type by the synthesis dependent strand annealing mechanism.
Genetics. 177(1): 255-265, 2007.
[Journal]
28)  Armakolas A, Klar AJ.
Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis.
Science. 311: 1146-9, 2006.
[Journal]
29)  Klar A, Armakolas A.
Response to Comment on "Cell Type Regulates Selective Segregation of Mouse Chromosome 7 DNA Strands in Mitosis".
Science. 313: 1045c, 2006.
[Journal]
30)  Klar AJ.
A 1927 study supports a current genetic model for inheritance of human scalp hair-whorl orientation and hand-use preference traits.
Genetics. 170: 2027-30, 2005.
[Journal]
31)  Thon G, Hansen KR, Altes SP, Sidhu D, Singh G, Verhein-Hansen J, Bonaduce MJ, Klar AJ.
The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe.
Genetics. 171: 1583-95, 2005.
[Journal]
32)  Klar AJ.
A genetic mechanism implicates chromosome 11 in schizophrenia bipolar diseases.
Genetics. 167: 1833-1840, 2004.
[Journal]
33)  Klar AJ.
An epigenetic hypothesis for brain laterality, handedness, and psychosis development.
Cold Spring Harbor Symp. Quant. Biol. 69: 499-506, 2004.
[Journal]
34)  Lee BS, Grewal SI, Klar AJ.
Biochemical interactions between proteins and mat1 cis-acting sequences required for imprinting in fission yeast.
Mol Cell Biol. 24: 9813-22, 2004.
[Journal]
35)  Klar AJ.
Excess of counterclockwise scalp hair-whorl rotation in homosexual men.
J Genet. 83: 251-5, 2004.
[Journal]
36)  Millar JK, Thomson PA, Wray NR, Muir WJ, Blackwood DH, Porteous DJ.
Response to "Commentary on Klar.".
Genetics. 167: 2141-2142, 2004.
[Journal]
37)  Klar AJS.
Critique of chromosome 1;11 translocationcausing psychosis.
Genetics. 163: 837-838, 2003.
[Journal]
38)  Singh G, Klar AJ.
DNA sequence of the mat2,3 region of Schizosaccharomyces kambucha shares high homology with the corresponding sequence from Sz. pombe.
Yeast. 20: 1273-8, 2003.
[Journal]
39)  Klar AJS.
From development of yeast cells to human brain hemispheres to psychosis.
Inspiring Science: Jim Watson and the age of DNA, Cold Spring Harbor Laboratory, New York. 277-284, 2003.
[Journal]
40)  Klar AJ.
Human handedness and hair-whorl direction develop from a common genetic mechanism.
Genetics. 165: 269-276, 2003.
[Journal]
41)  Klar AJ.
Fibonacci's flowers.
Nature. 417: 595, 2002.
[Journal]
42)  Singh G, Klar AJ.
The 2.1-kb inverted repeat DNA sequences flank the mat2,3 silent region in two species of Schizosaccharomyces and are involved in epigenetic silencing in Schizosaccharomyces pombe.
Genetics. 162: 591-602, 2002.
[Journal]
43)  Singh G, Klar AJ.
The 2.1-kb inverted repeat DNA sequences flank the mat2,3 silent region in two species of Schizosaccharomyces and are involved in epigenetic silencing in Schizosaccharomyces pombe.
Genetics. 162: 591-602, 2002.
[Journal]
44)  Klar AJ.
The chromosome 1;11 translocation provides the best evidence supporting genetic etiology for schizophrenia and bipolar affective disorders.
Genetics. 160: 1745-7, 2002.
[Journal]
45)  Dalgaard JZ, Klar AJ.
A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe.
Genes Dev. 15: 2060-8, 2001.
[Journal]
46)  Nakayama Ji , Allshire RC, Klar AJ, Grewal SI.
A role for DNA polymerase alpha in epigenetic control of transcriptional silencing in fission yeast.
EMBO J. 20: 2857-66, 2001.
[Journal]
47)  Dalgaard JZ, Klar AJ.
Does S. pombe exploit the intrinsic asymmetry of DNA synthesis to imprint daughter cells for mating-type switching?.
Trends Genet. 17: 153-7, 2001.
[Journal]
48)  Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR.
The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans.
J Bacteriol. 183: 4614-25, 2001.
[Journal]
49)  Nakayama J, Klar AJ, Grewal SI.
A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis.
Cell. 101: 307-17, 2000.
[Journal]
50)  Dalgaard JZ, Klar AJ.
swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe.
Cell. 102: 745-51, 2000.
[Journal]
51)  Dalgaard JZ, Klar AJ.
Orientation of DNA replication establishes mating-type switching pattern in S. pombe.
Nature. 400: 181-4, 1999.
[Journal]
52)  Grewal SI, Bonaduce MJ, Klar AJ.
Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast.
Genetics. 150: 563-76, 1998.
[Journal]
53)  Klar AJ.
Propagating epigenetic states through meiosis: where Mendel's gene is more than a DNA moiety.
Trends Genet. 14: 299-301, 1998.
[Journal]
54)  Grewal SI, Klar AJ.
Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis.
Cell. 86: 95-101, 1996.
[Journal]
55)  Klar AJ.
Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast.
Nature. 326: 466-70, 1987.
[Journal]
56)  Klar AJ, Fogel S.
Activation of mating type genes by transposition in Saccharomyces cerevisiae.
Proc. Natl. Acad. Sci. U.S.A. 76: 4539-43, 1979.
[Journal]
57)  Hicks J, Strathern JN, Klar AJ.
Transposable mating type genes in Saccharomyces cerevisiae.
Nature. 282: 478-3, 1979.
[Journal]
Click Here to View Collapsed Bibliography.

This page was last updated on 8/6/2014.